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Abstract
In the present paper we consider the problem of the description of an arbitrary
generalized quantum measurement with outcomes in a measurable space.

Analysing the unitary invariants of a separable statistical realization of a
quantum instrument, we present the most general form of a possible integral
representation of an instrument. We introduce the notion of a stochastic
realization of an instrument and establish a one-to-one correspondence between
the class of unitarily and phase equivalent separable statistical realizations
and the equivalence class of stochastic realizations of an instrument. We
further single out the invariant class of unitarily and phase equivalent separable
statistical realizations for which the integral representation of an instrument is
the same for all statistical realizations from this class and is wholly determined
by the invariants of this class. We call the special form of this integral
representation the quantum stochastic representation of an instrument.

We show that the description of a generalized direct quantum measurement
can be considered in the frame of a new general approach based on the notion of a
family of quantum stochastic evolution operators satisfying the orthonormality
relation. This approach gives not only the complete statistical description of
any generalized direct quantum measurement but the complete description
in a Hilbert space of the stochastic behaviour of a quantum system under a
generalized direct measurement in the sense of specifying the probabilistic
transition law governing the change from the initial state to a final one under
a single measurement. Under this approach a unitary evolution of an isolated
quantum system is included as a special case.

In the frame of the proposed approach, which we call quantum stochastic
approach, all possible schemes of measurements upon a quantum system can
be considered. In the case of repeated or continuous in time measurements
the quantum stochastic approach allows to define, in the most general case, the
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notion of the family of posterior pure state trajectories (quantum trajectories in
discrete or continuous time) in the Hilbert space of a quantum system and to
give their probabilistic treatment.

PACS numbers: 03.65.Ta, 02.50.-r, 03.70.+k, 05.30.-d

1. Introduction

The behaviour of an isolated quantum system, which is not observed, is quantum deterministic
since it is described by the Schrödinger equation, whose solutions are reversible in time. Under
a measurement the behaviour of a quantum system becomes irreversible in time and stochastic.
Not only is the outcome of a measured quantum quantity random, being defined with some
probability distribution, but the state of the quantum system under a measurement becomes
random as well.

We would like to specify from the very beginning that under a quantum measurement we
mean a physical experiment upon a quantum system, which resulting in the observation in the
classical world of an outcome may cause a change in the state of the quantum system, but not
the quantum system’s destruction. We distinguish direct and indirect quantum measurements.
A direct quantum measurement corresponds to a measurement situation where we have to
describe the direct interaction between the measuring device and the observed quantum system,
while in case of an indirect measurement, a direct measurement is performed upon some other
quantum system, entangled with the one considered.

The term ‘generalized measurement’, as usual, corresponds to measurement situations
with outcomes of the most general possible nature.

In quantum measurement theory the formalization of the complete statistical description
of any generalized quantum measurement is given by the operational approach [2–9]. The
complete statistical description implies the knowledge of the probability distribution of
different outcomes of the measurement and a statistical description of the state change of
the quantum system under the measurement.

However, the operational approach does not, in general, give the possibility to include
into consideration the description under a single measurement of the stochastic behaviour of
a quantum system, depending on outcomes in the classical world. The description of such
stochastic behaviour of a quantum system means the specification of a probabilistic transition
law governing the change from the initial state of a quantum system to a final one under a
single measurement. We refer to this kind of description as a complete stochastic description
of the random behaviour of the quantum system under a single measurement.

The complete stochastic description is, in particular, very important in the case of
continuous in time measurements of an open system, where the evolution of the continuously
observed open system differs from that described by reversible in time solutions of the
Schrödinger equation.

The operational approach also does not, in general, specify the description of a generalized
direct quantum measurement.

We would like to underline here that, in general, the description of a direct quantum
measurement cannot be simply reduced to the quantum theory description of a measuring
process. We cannot specify definitely neither the interaction, nor the quantum state of a
measuring device environment, nor describe a measuring device only in quantum theory terms.
In fact, under such a scheme the description of a direct quantum measurement is simply referred
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to the description of a direct measurement of some observable of an environment of a measuring
device. But the problem still remains. Moreover, in quantum theory any physically based
problem must be formulated in unitarily equivalent terms and the results of its consideration
must not be dependent neither on the choice of a special representation picture (Schrödinger,
Heisenberg or interaction) nor on the choice of a basis in the Hilbert space.

We recall that for the case of discrete outcomes the original von Neumann approach [1]
in quantum measurement theory describes specifically a direct quantum measurement and
gives both the complete statistical description of a measurement and the complete stochastic
description of the random behaviour of the quantum system under a single measurement.

In this paper we present the new mathematical results on the notion of an instrument, which
is used in the quantum measurement theory and the theory of open systems. Using these
mathematical results, we further introduce a new general approach, the quantum stochastic
approach (QSA), to the description of an arbitrary generalized direct quantum measurement
based on the introduction of the physically important mathematical notion of the family of
quantum stochastic evolution operators, satisfying the orthonormality relation.

The QSA may be considered as the quantum stochastic generalization of the original von
Neumann approach to the description of direct measurements with discrete outcomes to the
case of any measurable space of outcomes, any type of a scalar measure on a space of outcomes
and any type of a quantum state reduction.

Due to the orthonormality relation, the QSA allows to interpret the posterior pure states,
defined by quantum stochastic evolution operators, as posterior pure state outcomes in a Hilbert
space corresponding to different random measurement channels. Physically, the notion of
different random measurement channels, under the same observed outcome, corresponds, to
different underlying random quantum transitions of the environment of a measuring device,
which we cannot, however, specify with certainty.

In the case when a quantum system is isolated the family of quantum stochastic evolution
operators consists of only one element, which is a unitary operator.

The QSA gives not only the complete statistical description of any generalized direct
quantum measurement, but it gives alo the complete stochastic description of the random
behaviour of the quantum system under a single measurement.

Even for the special case of discrete outcomes, the QSA differs, due to the orthogonality
relation for posterior pure state outcomes, from looking somewhat similar approaches
considered in the physical literature [18, 19], where the so-called ‘measurement’ or Kraus
operators are used for the description of both the statistics of a measurement (a POV measure)
and the conditional state change of a quantum system.

We generalize as far as possible our results presented in [15–17], where the notion of
a quantum stochastic operator was defined for the description of conditional evolution of
continuously observed quantum systems in the general case of non-demolition measurements.

In section 2 we review the main approaches to the description of quantum measurements,
specifying the characteristic features of each approach.

In section 3 we present the new mathematical results on the notion of an instrument.
In section 3.1 we introduce the notion of a class of unitarily and phase equivalent

separable statistical realizations of an instrument and find its invariants. In section 3.2 we
present the most general form of an integral representation of an instrument, which differs
from the integral representations of an instrument available in the mathematical and physical
literature. In section 3.3 we introduce the notion of a stochastic realization of an instrument
and establish a one-to-one correspondence between the class of unitarily and phase equivalent
statistical realizations and the equivalence class of stochastic realizations of an instrument. In
section 3.4 we single out invariant classes of unitarily and phase equivalent separable statistical
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realizations. For the invariant class the integral representation of the corresponding instrument
is the same for all statistical realizations from this class and is wholly determined by unitary
invariants of a separable statistical realization from this class. We call the special form of
the integral representation of an instrument, corresponding to an invariant class, quantum
stochastic due to its importance in the quantum measurement theory.

In section 4 we show that any generalized direct quantum measurement can be interpreted
to correspond to an invariant class of unitarily and phase equivalent statistical realizations
(measuring processes) and introduce the main ideas of the QSA. We consider also the
description of an indirect quantum measurement in the frame of the QSA.

In section 5 we give the semiclassical interpretation of the QSA to the description of a
generalized direct quantum measurement in terms of the classical probability description of a
measuring apparatus and the quantum description of the observed quantum system.

In section 6 we present the concluding remarks.

2. The main approaches to the description of quantum measurements

Let us first review the main approaches to the description of quantum measurements available
up to the present moment and specify the characteristic features of each approach.

2.1. Von Neumann approach

Let HS be a complex separable Hilbert space of a quantum system. According to the von
Neumann approach [1] only self-adjoint operators on HS are allowed to represent real-valued
variables of a quantum system, which can be measured. The probability distribution of different
outcomes of a direct measurement on a quantum observable is described by the spectral
projection-valued measure P̂ (·) on (R,B(R)) corresponding, due to the spectral theorem,
to the self-adjoint operator representing this observable.

In the case of discrete spectrum of a measured quantum observable the famous von
Neumann reduction postulate [1] prescribes the well known ‘jump’ of a state of a quantum
system under a measurement.

Specifically, if under a direct measurement upon a von Neumann observable

B̂ =
∑
j

λj P̂j (1)

the initial state ρS of a quantum system is pure, that is, ρS = |ψ0〉〈ψ0|, and if under a single
measurement the outcome λj is observed, then in the frame of the von Neumann approach at
the moment immediately after this measurement the quantum system ‘jumps’ with certainty
to the pure state

P̂j |ψ0〉〈ψ0|P̂j

||P̂jψ0||2
. (2)

The probability µj of the outcome λj is given by

µj = ||Pjψ0||2. (3)

In the case of continuous spectrum of a measured quantum observable the description of a
state change of a quantum system under a measurement is not formalized.

The simultaneous direct measurement of n quantum observables is allowed if and only
if the corresponding self-adjoint operators and, consequently, spectral projection-valued
measures, commute. Such a measurement is described by the projection-valued measure

P̂ (E1 × E2 × · · · × En) = P̂1(E1)P̂2(E2) · · · · · P̂n(En) (4)
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on (Rn, B(Rn)) common for all n commuting self-adjoint operators.
We would like to underline that in the case of discrete outcomes the original von

Neumann approach gives both the complete statistical description of a measurement and the
complete stochastic description of the random behaviour of a quantum system under a single
measurement (formula (2)).

The generalizations of von Neumann approach, to be discussed in what follows, are caused
by the fact that even for measurements with outcomes in (R,B(R)), this approach does not
describe a state reduction of a quantum system in the general case where the spectrum of a
measured quantum observable may be continuous or complicated, and it does not describe all
measurements possible upon a quantum system.

2.2. The description of a generalized quantum measurement

In the further developments of quantum measurement theory [2–9] the mathematical notion
of a probability operator-valued (POV) measure is used for the description of a probability
distribution on a space of outcomes in the case of any measurement possible upon a quantum
system.

Let � be a set of outcomes of the most general nature possible under a quantum
measurement and F be a σ -algebra of subsets of �. Let L(Hs) be the Banach space of
all bounded linear operators on HS.

A mapping M̂(·) : F → L(HS) is called a probability operator-valued measure, or a
POV measure for short, if M̂(·) is a σ -additive measure on (�, F ) with values M̂(E),E ∈ F

that are positive bounded linear operators on HS such that the following condition is valid:
M̂(�) = Î .

Given a POV measure, a scalar probability measure µρS(·) on (�, F ), describing the
probability distribution of possible outcomes of a measurement upon the quantum system,
being at the instant before the measurement in the state ρ̂S, is given by

µρS(E) = tr[ρ̂S M̂(E)] ∀E ∈ F. (5)

In contrast to a spectral projection-valued measure on (R,B(R)), which is one-to-one defined
by a self-adjoint operator, different possible measurements with outcomes in (R,B(R)), being
described by different POV measures on (R,B(R)) may correspond to one and the same
observable, represented by a self-adjoint operator.

A POV measure is sometimes called a generalized observable [3] or semiobservable [6]
of a quantum system. A spectral projection-valued measure P̂ (·) on (R,B(R)) (and the
corresponding self-adjoint operator, for short ) is called a von Neumann observable.

The notion of a POV measure does not, however, describe in any way a state change
of a quantum system under a generalized quantum measurement. Thus, with respect to a
quantum system it does not give the complete statistical description of a generalized quantum
measurement.

2.3. Operational approach

The complete statistical description of any generalized quantum measurement is specified
in the frame of the operational approach where the mathematical notion of a quantum
instrument [2–6] plays a central role.

Specifically, a mapping T̂ (·)[·] : F × L(HS)→ L(HS) is called a quantum instrument if
T̂ (·) is a σ -additive measure on (�, F ) with values T̂ (E), E ∈ F, that are normal completely
positive bounded linear maps L(HS) → L(HS) such that the following normality relation is
valid: T̂ (�)[Î ] = Î .
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From now on we shall only consider quantum instruments and henceforth we therefore
suppress the term ‘quantum’.

Given the instrument of a measurement, the POV measure of that measurement is defined
as

M̂(E) = T̂ (E)[Î ] ∀E ∈ F. (6a)

The scalar probability measure on (�, F ), defining a probability distribution of possible
outcomes under a measurement upon a quantum system being before the measurement in
the state ρ̂S, is

µρS(E) = tr[ρ̂ST̂ (E)[Î ]]. (6b)

The conditional expectation of any von Neumann observable Ẑ at the instant immediately after
the measurement, under the condition that the observed outcome belongs to the subset E, is
given by

Ex{Ẑ|E} = tr[ρ̂ST̂ (E)[Ẑ]]

µρS(E)
(7a)

and the quantum mean value is

〈Ẑ〉 ≡ Ex{Ẑ|�} = tr[ρ̂ST̂ (�)[Ẑ]]. (7b)

The knowledge of an instrument gives the statistical description of a state change of a quantum
system caused by a measurement [6]. The posterior (conditional) state (or density, or statistical,
operator) of a quantum system ρ̂(E, ρ̂S), conditioned by the outcome being in E, is defined
by the relation

Ex{Ẑ|E} = tr[ρ̂ST̂ (E)[Ẑ]]

µρS(E)
= tr[ρ̂(E, ρ̂S)Ẑ]. (8a)

The unconditional (prior) state ρ̂(�, ρ̂S) of a quantum system defines the quantum mean value

〈Ẑ〉 = tr[ρ̂(�, ρ̂S)Ẑ] (8b)

of a von Neumann observable Ẑ at the instant after a measurement if the results of a
measurement are ignored.

Any conditional state change of a quantum system can be completely described in the
Hilbert space HS by a family of statistical operators {ρ̂(ω, ρ̂S), ω ∈ �} called usually a family
of posterior states [7, 8]. For any instrument and a premeasurement state ρ̂S of a quantum
system the family {ρ̂(ω, ρ̂S), ω ∈ �} always exists and is defined uniquely, µρS(·)-almost
everywhere, by

tr[ρ̂S T̂ (E)[Â]] =
∫
ω∈E

tr[ρ̂(ω, ρ̂S)Â]µρS(dω) (9a)

for ∀Â ∈ L(HS), ∀E ∈ F . From (8) and (9a) it follows that the family {ρ̂(ω, ρ̂S), ω ∈ �}
determines the conditional expectation by

Ex{Ẑ|E} =
∫
ω∈E tr[ρ̂(ω, ρ̂S)Ẑ]µρS(dω)

µρS(E)
(9b)

and

〈Ẑ〉 =
∫
�

tr[ρ̂(ω, ρ̂S)Ẑ]µρS(dω). (9c)
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The posterior statistical operator ρ̂(E, ρ̂S) of a quantum system, conditioned by the outcome
ω ∈ E, is presented through the family of posterior states {ρ̂(ω, ρ̂S), ω ∈ �} as

ρ̂(E, ρ̂S) =
∫
ω∈E ρ̂(ω, ρ̂S)µρS(dω)

µρS(E)
. (10)

There is a one-to-one correspondence between a POV measure and a family of posterior
statistical operators on the one side and an instrument on the other side [7,8]. Knowing a POV
measure and a family of posterior states one can reconstruct the instrument.

2.4. Statistical realizations of an instrument

As well as in the von Neumann approach as in the operational approach the notion of a
projection-valued measure on (�, F ) plays a fundamental role.

Introduce the following notation. Let σ̂ be a statistical operator on a separable Hilbert
spaceK and Q̂ be an operator belonging toL(HS⊗K). There exists [6] a uniquely determined
normal completely positive bounded linear map Eσ : L(HS ⊗ K) → L(ĤS) such that the
relation

tr[ρ̂ Eσ [Q̂]] = tr[(ρ̂ ⊗ σ̂ )Q̂] (11)

is valid for any statistical operator ρ̂ on HS.
In [6] it was shown that for any instrument on a Borel space (�, F ) with the values in

L(HS) there exist a Hilbert space K, a statistical operator σ̂ on K , a unitary operator Û and a
projection-valued measure Î ⊗ P̂ (·) on HS ⊗K , such that the instrument can be presented in
the form:

T̂ (E)[Â] = Eσ [Û+(Â⊗ P̂ (E)) Û ] ∀E ∈ F,∀Â ∈ L(HS). (12)

A 4-tuple

{K, σ̂ , P̂ (·), Û} (13)

is called a measuring process of the corresponding generalized observable (a POV measure) or
a statistical realization of an instrument. For a given instrument a statistical realization always
exists but may not be unique.

If in (13) the Hilbert space K is separable then the corresponding statistical realization is
called separable.

In quantum theory a Hilbert space HS of a system is always separable, while the value
space is mostly a standard Borel space (that is a Borel space which is Borel isomorphic to a
complete separable metric space).

If (�, FB) is a standard Borel space and the Hilbert space HS of a quantum system is
separable, then there exists a separable statistical realization of any instrument T̂ (·)[·] on
(�, FB) [6].

In [1, p 442] von Neumann showed that the state reduction, first postulated by him in
his projection postulate, can be formally derived in the scheme of a measuring process.
Consider [6] a von Neumann measuring process of the observable (1), which, with respect
to the considered quantum system, results:

(a) in the POV measure

M̂(E) ≡ P̂ (E) =
∑
λj∈E

P̂j (14a)

on (R,B(R)), being the spectral projection-valued measure, corresponding to (1);
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(b) in the family of posterior states

ρ̂({λj }, ρ̂S) = P̂j ρ̂SP̂j

tr[ρ̂SP̂j ]
(14b)

corresponding to the von Neumann reduction postulate.
The unique instrument, corresponding to (14a), (14b), has the form

T̂ (E)[Â] =
∑
λj∈E

P̂j ÂP̂j (14c)

for ∀E ∈ B(R), ∀Â ∈ L(HS).
Let {ψjk} be the complete orthonormal set of eigenvectors of the observable (1):

B̂ψjk = λjψjk P̂j =
∑
k

|ψjk〉〈ψjk|. (15)

Let K be another complex separable Hilbert space, {ηi} and η be, respectively, a complete
set of orthonormal vectors and an unit vector in K . Let Û be a unitary operator on HS ⊗ K ,
satisfying the relation

Û (ψjk ⊗ η) = ψjk ⊗ ηj . (16)

The 4-tuple {
K, |η〉〈η|,

∑
λj∈E

|ηj 〉〈ηj |, Û
}

(17)

presents a von Neumann measuring process for the observable (1) or a separable statistical
realization of the instrument (14c):

T̂ (E)[Â] = E|η〉〈η|

[
Û+

(
Â⊗

∑
λj∈E

|ηj 〉〈ηj |
)
Û

]
=

∑
λj∈E

P̂j ÂP̂j . (18)

We would like to emphasize that (17) presents a von Neumann measuring process of the
observable (1) for any pair—a set {ηi} of orthonormal vectors and an unit vector η in K .

Thus, the concept of the direct measurement of the observable (1) in the frame of the
von Neumann approach corresponds to the description of different measuring processes, given
by (17). We discuss this point in detail in section 4.

2.5. Integral representations of an instrument

In [10–12] it was proved (although, the contents of the corresponding theorems in [10, 12] is
slightly different) that for any instrument on (�, FB) there exist a positive scalar measure µ(·)
on (�, FB) , a dense domain D ⊂ HS, a countable family of functions ω → X̂k(ω), defined
for µ-almost all ω, such that X̂k(ω) are linear operators from D to HS, satisfying the relation∫

�

∑
k

||X̂k(ω)ψ ||2µ(dω) = ||ψ ||2 ∀ψ ∈ D (19)

and

〈ψ, T̂ (E)[Â]ψ〉 =
∫
ω∈E

(∑
k

〈X̂k(ω)ψ, ÂX̂k(ω)ψ〉
)
µ(dω) ∀ψ ∈ D. (20)

The representation (20) is similar to the Stinespring–Kraus representation for completely
positive maps but according to [12] the operators X̂k(ω), involved in (20), are defined only on
D ⊂ HS.
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If in (20) k = 1, then such an instrument is called pure in [12].
From (20) and (9a) it follows that, if prior to the measurement the quantum system is in

a pure state ρ̂0 = |ψ〉〈ψ | and ψ ∈ D then the family of posterior states {ρ̂(ω, ρ̂0), ω ∈ �},
describing the conditional state change of the quantum system, is given by

ρ̂(ω, ρ̂0) =
∑

k |X̂k(ω)ψ〉〈X̂k(ω)ψ |∑
k ||X̂k(ω)ψ ||2

. (21)

For the case of continuous in time nondemolition observation of an open system the
representations of an instrument, similar to (20), were considered in [13,14] (cf also references
there) and in [15–17].

In the physical literature on quantum measurements, in the special case when � = R and
the spectrum of the measured quantum quantity is discrete, the formulae for the POV measure
and the posterior states, similar to (20), (21), were presented in [18, 19].

3. Quantum stochastic representation of an instrument

The aim of the present section is to analyse if there is any mathematical background for the
description of a generalized quantum measurement via probability scalar measures on (�, FB)

and operator-valued functions, defined with respect to these measures and describing in a
Hilbert space HS the conditional behaviour of a quantum system under a measurement.

It was noted in section 2.4 that for a given instrument a statistical realization (a measuring
process) always exists but may not be unique. This mathematical fact corresponds to a clear
physical situation when for different quantum measurements their statistical description may
be the same.

An integral representation of an instrument also has a clear physical interpretation since
it allows, in principle, to consider not only a statistical description of a generalized quantum
measurement but also the stochastic conditional evolution of the quantum system under a single
generalized measurement.

However, the integral representation of an instrument (20) is not based on any invariants
of the corresponding measuring processes.

That is why, we are now interested what is the most general form of an integral
representation of an instrument and what is the correspondence, in the most general case,
between classes of statistical realizations and classes of integral representations of the same
instrument.

In quantum theory any physically based problem must be formulated in unitarily equivalent
terms and the results of its consideration must not be dependent neither on the choice of a special
representation picture (Schrödinger, Heisenberg or interaction) nor on the choice of a basis in
the Hilbert space. That is why, in section 3.1 we introduce the notion of the class of unitarily
equivalent separable statistical realizations of an instrument and consider its invariants.

We find (section 3.2) the most general form (theorem 1) of integral representation of
an instrument. This form differs from the integral representation (20). The most important
difference is due to the orthogonality relation, which is not present in integral representations
of an instrument, available in the mathematical and physical literature [10–13, 18, 19]. We
prove in the most general case that in the case of a finite positive scalar measure (µ(·) in the
notation of (19)) the integral representation of an instrument is given through theµ-measurable
operator-valued functions on all of HS.

We introduce the notion of a stochastic realization of an instrument (section 3.3).
We show that for any instrument there exists a stochastic realization (proposition 1) and
establish a one-to-one correspondence between the class of unitarily equivalent separable
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statistical realizations and the equivalence class of stochastic realizations of the instrument
(theorems 2, 3).

We call a stochastic realization of an instrument quantum stochastic (section 3.4) if it
has the factorized form (52a). We show that for any instrument there exists a quantum
stochastic realization (proposition 2). We further single out the invariant class of unitarily
equivalent separable statistical realizations for which the corresponding equivalence class
of stochastic realizations contains only invariant quantum stochastic realizations, specified
by (53a). We prove (theorem 4) that for the invariant class of unitarily equivalent statistical
realizations the integral representation of an instrument is the same for all statistical realizations
from this class and is wholly determined by the invariants of this class. We call the special
form (56) of the integral representation of an instrument, corresponding to an invariant class of
unitarily and phase equivalent statistical realizations, a quantum stochastic representation of an
instrument. The term ‘quantum’ reflects the importance of this kind of integral representation
of an instrument for the description of generalized direct quantum measurements (cf section 4).

The general mathematical results, derived in this section, can be used for the quantum
measurement theory and the theory of open systems. These results allow us to introduce in
section 4 a new general approach, the QSA, to the description of generalized direct quantum
measurements.

From now on we shall only consider complex separable Hilbert spaces and separable
statistical realizations and henceforth we therefore suppress the term ‘separable’.

3.1. Unitary invariants of a statistical realization

Let

T̂ (E)[Â] (22a)

be an instrument on a standard Borel space (�, FB)with values in L(HS), where HS is a
complex Hilbert space of the quantum system.

Let γ = {K, σ̂ , P̂(·), Û} be a statistical realization of the instrument (22a), that is,

T̂ (E)[Â] = Eσ [ Û+(Â⊗ P̂ (E)) Û ]. (22b)

Consider some general properties of Eσ [Q̂], defined by (11), where Q̂ is an operator belonging
to L(HS ⊗K).

Let σ̂ =∑
i λi p̂i , p̂i p̂j = δij p̂j be the spectral decomposition of the statistical operator

σ̂ and k(λi) be the multiplicity (which is always finite) of the positive eigenvalue λi . Then,
letting σ̂i = (k(λi))

−1 p̂i , we have

Eσ [Q̂] =
∑
i

λik(λi) Eσi [Q̂] (23a)

where the sum is convergent [6] in the weak operator topology.
Under a unitary transform Ŵ : K ′ → K , we have the following relation:

Eσ [Q̂] = Eσ ′ [Q̂
′] (23b)

with the statistical operator σ̂ ′ on K ′ and the operator Q̂′ ∈ L(HS ⊗K ′) being given by

σ̂ ′ = Ŵ−1σ̂ Ŵ Q̂′ = (Î ⊗ Ŵ−1)Q̂(Î ⊗ Ŵ ). (23c)

Consider a statistical realization γ = {K, σ̂ , P̂(·), Û} of an instrument (22a).

Definition. We shall say that a statistical realization γ ′ = {K ′, σ̂ ′, P̂ ′(·), Û ′} is unitarily
equivalent to γ if there exists a unitary transform Ŵ : K ′ → K under which
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σ̂ ′ = Ŵ−1σ̂ Ŵ P̂ ′(·) = Ŵ−1P̂ (·)Ŵ Û ′ = (Î ⊗ Ŵ−1)Û(Î ⊗ Ŵ ). (24a)

Definition. All properties of a statistical realization, which do not change under a unitary
transform (24a), we shall call unitary invariants of the statistical realization.

Due to (22b), (23b) and (23c) the instrument is a unitary invariant of the statistical
realization.

We shall also say that a statistical realization γξ = {K, σ̂ , P̂(·), eiξ Û} is phase-equivalent
to the statistical realization γ . Let G(γξ ) be the set of all statistical realizations of an
instrument (22) unitarily equivalent to a statistical realization γξ .

Introduce Gγ = {G(γξ ), ξ ∈ R}—the class of all statistical realizations unitarily and
phase equivalent to the statistical realization γ . The class Gγ includes, in particular, all
unitarily and phase equivalent statistical realizations corresponding to one and the same Hilbert
space K .

Definition. We shall say that some property is an invariant of a class of statistical realizations
if this property is the same for all statistical realizations from this class.

The dimension Dγ of Hilbert spaces K in statistical realizations from the class Gγ is the
simplest invariant of this class.

In general, the same instrument induces different classes Gγ , but all these classes have a
common invariant—the instrument itself.

Let

{HR, σ̂R, P̂R(·), ÛR} (24b)

be any statistical realization from the class Gγ on some fixed Hilbert space HR.
Consider on (�, FB) the family of positive scalar Borel measures {µϕ(·) =

〈ϕ, P̂R(·)ϕ〉,∀ϕ ∈ HR}, induced by the projection-valued measure P̂R(·). For any projection-
valued measure in the Hilbert space HR there exists [20] ϕ̃ ∈ HR such that with respect to a
subset E ∈ FB the equations µϕ̃(E) = 0 and P̂R(E) = 0̂ are equivalent. The element ϕ̃ ∈ HR

is said to be an element of maximum type [20] for the projection-valued measure P̂R(·). Denote
by [µϕ̃] the type of the scalar measure µϕ̃(·)( i.e. [µϕ̃] is the class of positive scalar measures
equivalent to µϕ̃(·)).
Definition. The spectral type [P̂R(·)] of a projection-valued measure P̂R(·) on (�, FB) is
defined to be equal to the type [µϕ̃] of the positive scalar Borel measure µϕ̃(·) = 〈ϕ̃, P̂R(·)ϕ̃〉,
induced by an element ϕ̃ ∈ HR of the maximum type [20].

Let ν(·) be a positive scalar Borel measure on (�, FB) of the type [ν(·)] = [P̂R(·)]. For
any φ ∈ HR introduce the subset

�(φ) =
{
ω

∣∣∣∣ω ∈ �,
dµφ

dν
(ω) > 0

}
(25a)

which is defined ν-almost everywhere (ν-a.e.) and does not depend on the choice of the scalar
measure ν(·) on (�, FB) out of the class of equivalent scalar measures of the type [P̂ R(·)].

The following statements are valid ν-a.e. [20]:

�(φ) ⊂ �(ϕ)⇔ [µφ] ≺ [µϕ] (25b)

�(φ) = �(ϕ)⇔ [µφ] = [µϕ] (25c)

P̂R(�(φ))φ = φ ∀φ ∈ HR (25d)

�(η1) ∩�(η2) = ∅ ⇒ 〈η1, P̂R(·)η2〉 = 0 (25e)

〈η1, P̂R(·)η2〉 = 0 ⇒ �(η1 + η2) = �(η1) ∪�(η2). (25f)
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If

[µφ] = [P̂R(·)] η = P̂R(E)φ, E ∈ FB (25g)

then

�(η) = E. (25h)

For any projection-valued measure P̂R(·) on (�, FB) there exists [20] a family of elements
{ηj , ηj ∈ HR, j = 1, . . . , m; 1 � m � ∞}, satisfying 〈ηl, P̂R(·)ηk〉 = 0, ∀l �= k, such
that

HR =
∑
j

⊕Hηj

Hηj = {Ẑf ηj | f ∈ S(�, ν), ηj ∈ Df }
(26a)

and

[P̂R] = [µη1 ] � [µη2 ] � · · · . (26b)

In (26a) S(�, ν) is the class of ν-measurable, ν-a.e. finite functions: � → C; Ẑf is the
operator defined by the relation

Ẑf =
∫
�

f (ω)P̂R (dω) (26c)

with the domain Df = {ψ ∈ HR|
∫
�
|f (ω)|2 µψ(dω) <∞}.

If m > 1, then the decomposition (26a) of the Hilbert space HR is not unique.
From (25) and (26b) it follows that

� = �(η1) ⊃ �(η2) ⊃ · · · . (27a)

Introduce the sets �k, k = 1, . . . , m by the relations

�k = �(ηk)\�(ηk+1) k < m

�m =
⋂

k=1,...,m

�(ηk). (27b)

Definition. TheP̂R-measurable function NPR : � → {1, 2, . . . , n, . . .} defined P̂R-almost
everywhere by the relation

NPR(ω) = k, f or ω ∈ �k k = 1, . . . , m (27c)

is called a multiplicity function of the projection-valued measure P̂R(·) on (�, FB) [20].

The type [P̂R(·)] and the multiplicity function NPR(ω) characterize the projection-valued
measure P̂R(·) on (�, FB) up to unitary equivalence [20] (see also the formula (28e) below).
Since [P̂R(·)] and NPR(ω) are unitary invariants of P̂R(·), they are unitary invariants of any
statistical realization from the class Gγ and they are invariants of the class Gγ .

Let

H(ν,N;Y ) =
∫
�

⊕
Y

H(ω)ν(dω) (28a)

be the direct integral [20–22] of Hilbert spaces H(ω) on (�, FB), induced by:

• a positive scalar Borel measure ν(·) of the type [ν(·)] = [P̂R(·)];
• the dimension function N(ω) = dim H(ω), being equal ν-a.e. on � to the multiplicity

function NPR(ω) of the projection-valued measure P̂R(·) on (�, FB);
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• an orthonormal base of measurability Y = {en}, n = 1, . . . , l, where the positive integer
l is equal to ν-sup{N(ω), ω ∈ �}, which is defined as inf{c ∈ R : N(ω) � c, ν-a.e.}.

For any ω ∈ � the set {en(ω), n = 1, . . . , N(ω)} represents an orthonormal basis in
the Hilbert space H(ω). Every measurable function en(ω) is defined to be en(ω) ≡ 0 for
n > N(ω). Notice that ||e1(ω)||H(ω) = 1, ν-a.e. on �.

Recall (cf [20]) that the scalar product in the separable Hilbert spaceH(ν,N;Y ) is defined
by

〈f, g〉 =
∫
�

〈f (ω), g(ω)〉H(ω)ν(dω) (28b)

where the function

〈f (ω), g(ω)〉H(ω) =
N(ω)∑
n=1

〈f (ω), en(ω)〉H(ω)〈en(ω), g(ω)〉H(ω) (28c)

is ν-measurable since on the right-hand side in (28c) we have a convergent series of measurable
functions.

Two direct integrals H(ν,N;Y ) and H ′(ν ′, N ′;Y ′), induced by equivalent measures
ν ∼ ν ′ and equal, ν-a.e. on �, dimension functions N(ω) = N ′(ω), but possibly different
orthonormal bases of measurability Y and Y ′, are isometrically isomorphic to each other.

Since we are interested in finding unitary invariants of a statistical realization, we may take
any of the equivalent measures. We may also take any orthonormal base of measurability Y .

We take a finite measure ν(�) < ∞, since in this case any element of the orthonormal
base of measurability Y = {en} belongs to H(ν,N;Y ).

Let X̂ν(·) be the projection-valued measure on H(ν,N;Y ), defined by the relation

(X̂ν(E) g)(ω) = χE(ω)g(ω) ∀g ∈ H(ν,N;Y ) (28d)

ν-a.e. on �, where χE(·) is the characteristic function of a subset E ∈ FB.
Then there exists [20] a unitary transform R̂ : HR → H(ν,N;Y ) such that

P̂R(E) = R̂−1X̂ν(E)R. (28e)

The spectral type [X̂ν(·)] is equal to [P̂R(·)] = [ν(·)].
The statistical realization

{H(ν,N;Y ), σ̂ν, X̂ν(·), Ûν} σ̂ν = R̂σ̂R R̂−1 Ûν = (Î ⊗ R̂)ÛR(Î ⊗ R̂−1) (28f)

is unitarily equivalent to the statistical realization (24b) and belongs to the class Gγ .
Any other statistical realization {H(ν,N;Y ), σ̂ ′ν, X̂ν(·), Û ′

ν} from the class Gγ on
H(ν,N;Y ) must be unitarily equivalent to (28f ) with a unitary transform Ẑ : H(ν,N;Y )→
H(ν,N;Y ), commuting with the projection-valued measure X̂ν(·) and, consequently, being a
decomposable operator on H(ν,N;Y ) [20]. As any decomposable operator on H(ν,N;Y ),
the unitary operator Ẑ is presented by the relation:

(Ẑg)(ω) = ẑ(ω)g(ω) ẑ(ω) ∈ L(H(ω))

ẑ+(ω)ẑ(ω) = ẑ(ω)ẑ+(ω) = ÎH(ω) ∀g ∈ H(ν,N;Y ) (28g)

ν-a.e. on �.
Due to (23b) the instrument, being a unitary invariant of the statistical realization γ

and an invariant of the class Gγ , is given through the elements of the considered statistical
realization (28f ) as

T̂ (E)[Â] = Eσν [Û
+
ν (Â⊗ X̂ν(E))Ûν] ∀E ∈ FB ∀Â ∈ L(HS). (29a)
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Consider the spectral decomposition of the statistical operator σ̂ν :

σ̂ν =
Nγ∑
i=1

α(i)
γ p̂i p̂i p̂j = δij p̂i

α(i)
γ > 0

Nγ∑
i=1

α(i)
γ kγ (α

(i)
γ ) = 1.

(29b)

The set αγ = {α(i)
γ , i = 1, . . . , Nγ } of different positive eigenvalues of σ̂ν , the positive

integer Nγ (it may be infinite) and the multiplicities kγ (α(i)
γ ) <∞ of positive eigenvalues α(i)

γ

are unitary invariants of the statistical realization (28f ) and they are invariants of the class Gγ .
Let {ϕik} be the complete orthonormal set of eigenvectors of the statistical operator σ̂ν , then
in (29b) we have

p̂i =
kγ (α

(i)
γ )∑

k=1

|ϕik〉〈ϕik|. (29c)

For any index i, for which the multiplicity kγ (α
(i)
γ ) > 1, the set of eigenvectors {ϕik, k =

1, . . . , kγ (α(i)
γ )} is defined uniquely up to unitary equivalence, corresponding to different

choices of the basis in the subspace p̂iH(ν,N;Y ).
Thus, [P̂R], NPR , αγ , Nγ , {kγ (α(i)

γ )} are unitary invariants of the statistical realization γ

and invariants of the class Gγ .
From (23c) it follows that we can decompose the instrument (29a) in the following form

T̂ (E)[Â] =
Nγ∑
i=1

α(i)
γ kγ (α

(i)
γ )E

σ
(i)
ν

[Û+
ν (Â⊗ X̂ν(E))Ûν] ∀E ∈ FB ∀Â ∈ L(HS). (30a)

In (30a) σ̂ (i)
ν is the statistical operator defined by

σ̂ (i)
ν = (kγ (α

(i)
γ ))−1p̂i . (30b)

Denote by

T̂i(E)[Â] = E
σ
(i)
ν

[Û+
ν (Â⊗ X̂ν(E))Ûν] (30c)

any ‘i’ instrument in the decomposition (30a).
Introduce an equivalence relation on the space G = {Gγ , γ ∈ >} of all the classes of

unitarily and phase equivalent statistical realizations of the instrument (22a) in the following
way.

Two elements Gγ1 and Gγ2 of G are equivalent if for any statistical realization γ1 from the
class Gγ1 and any statistical realization γ2 from the class Gγ2 there exists a unitary transform
Ŵ : K1 → K2 and a real number ξ under which

P̂ (1)(·) = Ŵ−1P̂ (2)(·)Ŵ Û (1) = eiξ (Î ⊗ Ŵ−1)Û (2)(Î ⊗ Ŵ )

σ̂γ1 =
Nγ1∑
i=1

α(i)
γ1
kγ1(α

(i)
γ1
)σ̂ (i)

γ1
σ̂γ2 =

Nγ2∑
i=1

α(i)
γ2
kγ2(α

(i)
γ2
)σ (i)

γ2

Nγ1 = Nγ2 kγ1(α
(i)
γ1
) = kγ2(α

(i)
γ2
) σ̂ (i)

γ1
= Ŵ−1σ (i)

γ2
Ŵ ∀i = 1, . . . , Nγ1 .

(30d)

We denote an equivalence class in G by [Gγ ] if contains the class Gγ .
Due to (30d) and the property (23b), (23c) all instruments T̂i(·)[·], i = 1, . . . , Nγ , defined

by (30c), are invariants of the equivalence class [Gγ ]. Consequently, they are invariants of the
class Gγ .

Then, it follows that (30a) is an invariant decomposition for the class Gγ , that is the same
for all statistical realizations from this class.
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Introduce on (�, FB) the probability scalar measures:

νγ (E) = tr[σ̂νX̂ν(E)] =
Nγ∑
i=1

α(i)
γ kγ (α

(i)
γ )ν(i)γ (E)

ν(i)γ (E) = tr[σ̂ (i)
ν X̂ν(E)] i = 1, . . . , Nγ .

(31a)

These probability scalar measures are invariants of the class Gγ . The probability scalar
measures ν(i)γ (·), i = 1, . . . , Nγ are also invariants of the equivalence class [Gγ ].

From (31a) and (28b), (28d) it follows that the probability scalar measures νγ (·), ν(i)γ (·)
are absolutely continuous with respect to the positive scalar measure ν(·) in the direct integral
H(ν,N;Y ):

ν(i)γ (E) =
∫
ω∈E

πi(ω)ν(dω). (31b)

Substituting (30b) into (31a) and considering (28d) and (29c), we get the following expression
for the density of the probability scalar measure ν(i)γ (·) with respect to ν(·):

πi(ω) = trH(ω)[σ̂
(i)
ν (ω)] (31c)

where we denoted

σ̂ (i)
ν (ω) = (kγ (α

(i)
γ ))−1

kγ (α
(i)
γ )∑

k=1

ϕik(ω)〈ϕik(ω), ·〉H(ω). (31d)

The density πi(ω) does not depend on the choice of the basis {ϕik, k = 1, . . . , kγ (α(i)
γ )} in the

subspace p̂iH(ν,N;Y ).
Introduce also the operator-valued measures

Âγ (E) = Eσ̂ν
[(Î ⊗ X̂ν(E))Ûν] =

Nγ∑
i=1

α(i)
γ kγ (α

(i)
γ )A(i)

γ (E) (32a)

Â(i)
γ (E) = E

σ̂
(i)
ν

[(Î ⊗ X̂ν(E))Ûν] (32b)

on (�, FB) with values in L(HS).
These operator-valued measures are invariants (up to phase equivalence) of the class Gγ .

The measures Â(i)
γ (E) are also invariants (up to phase equivalence) of the equivalence class

[Gγ ]. Thus, we derived the following sets of invariants of the class Gγ

[P̂R], NPR , αγ , Nγ , {kγ (α(i)
γ )}, {ν(i)γ (·)}, νγ (·), {Â(i)

γ (·)}, Âγ (·) (32c)

and of the equivalence class [Gγ ]

[P̂R], NPR , Nγ , {kγ (α(i)
γ )}, {ν(i)γ (·)}, {Â(i)

γ (·)}. (32d)

3.2. General form of the integral representation of an instrument

As we have already mentioned the same instrument T̂ (E)[Â] induces different classes
of unitarily and phase equivalent statistical realizations, but all these classes have a
common invariant—the instrument itself. Consider for the instrument T̂ (E)[Â] and the
instruments T̂i(E)[Â], i = 1, . . . , Nγ , introduced by (30c), possible integral representations,
corresponding to the definite class Gγ . The most general form of integral representation of an
instrument is specified in theorem 1.
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Take some fixed orthonormal basis {ϕik, k = 1, . . . , kγ (α(i)
γ )} in the subspaces

p̂iH(ν,N;Y ). For any index i = 1, . . . , Nγ the unitary transformation from one basis to
another is described by:

ϕik =
kγ (α

(i)
γ )∑

p=1

ϑ
(i)
kp ϕ̃ip (33a)

where {ϑ(i)
kp } is any unitary matrix with elements being complex numbers.

Introduce on the Hilbert space H(ν,N;Y ) the decomposable projections Q̂n, n =
1, . . . , l (with l being equal to ν-sup{N(ω), ω ∈ �}), which are defined by the relation

(Q̂ng)(ω) = q̂n(ω)g(ω) ∀g ∈ H(ν,N;Y ) q̂n(ω) = en(ω)〈en(ω), ·〉H(ω) (33b)

ν-a.e. on �. In (33b) en are the elements of the orthonormal base of measurability Y = {en}
and for any n � N(ω) the operator q̂n(ω) is a one-dimensional projection on the Hilbert space
H(ω). Every decomposable operator on the Hilbert space H(ν,N;Y ) commutes [20] with
the projection-valued measure X̂ν(·), hence, in particular, we have

[Q̂n, X̂ν(·)] = 0̂. (33c)

Since the following relations are valid:

q̂n(ω)q̂m(ω) = δnmq̂n

N(ω)∑
n=1

q̂n(ω) = ÎH(ω) (33d)

ν-a.e. on �, the projections Q̂n are mutually orthogonal and

l∑
n=1

Q̂n = ÎH(ν,N;Y ). (33e)

If Ẑ is any unitary decomposable operator on H(ν,N;Y ), described by (28g), then the
projections

Q̂(Z)
n = ẐQ̂nẐ

+ n = 1, . . . , l (33f)

presented by the relation

(Q̂(Z)
n g)(ω) = ((ẐQ̂nẐ

+)g)(ω) = z(ω)q̂nẑ
+(ω)g(ω) (33g)

ν-a.e. on�, are also mutually orthogonal and summing up to the unity operator:
∑l

n=1 Q̂
(Z)
n =

ÎH(ν,N;Y ).
We denote

ẑ(ω)q̂nẑ
+(ω) = q̂(z)n = e(z)n 〈e(z)n , ·〉H(ω). (33h)

For any ω ∈ � the set {e(z)n (ω), n = 1, . . . , N(ω)} represents the new orthonormal basis in
H(ω) and the following relation is valid:

e(z)n (ω) = ẑ(ω)en(ω) =
N(ω)∑
m=1

ζ (z)nm(ω)em(ω) (33i)

where the complex-valued ν-measurable functions

ζ (z)nm(ω) = 〈em(ω), ẑ(ω)en(ω)〉H(ω) (33j)

are the elements of a unitary matrix {ζ (z)nm(ω)}. This matrix may be infinite.
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The probability scalar measures (31a), invariant for the class Gγ , can be now represented
in the form

ν(i)γ (E) = tr[σ̂ (i)
ν X̂ν(E)] = (kγ (α

(i)
γ ))−1

∫
ω∈E

∑
k=1,...,kγ (α

(i)
γ ),

n=1,...,N(ω)

|〈en(ω), ϕik(ω)〉H(ω)|2ν(dω) (34a)

νγ (E) = tr[σ̂νX̂ν(E)] =
Nγ∑
i=1

α(i)
γ kγ (α

(i)
γ )ν(i)γ (E). (34b)

The integrand sum in (34a) is invariant under the the transforms (33a), (33i), that is, we have∑
k=1,...,kγ (α

(i)
γ ),

n=1,...,N(ω)

|〈en(ω), ϕik(ω)〉H(ω)|2 =
∑

k=1,...,kγ (α
(i)
γ ),

n=1,...,N(ω)

|〈e(z)n (ω), ϕ̃ik(ω)〉H(ω)|2 (34c)

ν-a.e. on �.
For further consideration we prove some lemmas.

Lemma 1. Let H(ν,N;Y ) be a direct integral with a finite positive scalar measure ν(·). For
any unitary operator Û on HS⊗H(ν,N;Y ) and any unit vector ηi ∈ H(ν,N;Y ), there exists
a uniquely determined ν-measurable operator-valued function K̂

(U)
in (·) on � such that:

• For ∀E ∈ FB ∫
ω∈E

K̂
(U)
in (ω)ν(dω) (35a)

is a bounded linear operator on HS;
• The relation

((Î ⊗ Q̂nX̂ν(E))Û(g ⊗ ηi))(ω) = χE(ω)(K̂
(U)
in (ω)g ⊗ en(ω)) ∀g∈HS ∀E∈FB

(35b)

is valid ν-almost everywhere on �, where in (35b) the index n is less or equal to N(ω);
• For n > N(ω) the operator-valued function K̂

(U)
in (ω) = 0̂ ν-almost everywhere on �;

• The operator-valued function K̂
(U)
in (ω) is the Radon–Nikodym derivative of the operator-

valued measure

E|ηi 〉〈ηi |[(Î ⊗ Q̂nX̂(E))Û ] (35c)

with respect to the finite complex scalar measure µin(dω) = 〈ηi(ω), en(ω)〉ν(dω).
• The relation

(K̂ing)(ω) = K̂
(U)
in (ω)g ∀g ∈ HS (35d)

holding ν-a.e., defines the bounded linear operator K̂in : HS → L2(�, ν;HS) with the
norm ‖K̂in‖ � 1.

Proof. Let {φk} and {ξj } be any complete systems of orthonormal vectors in HS and
H(ν,N;Y ), respectively. Then the following relation is valid:

Û (g ⊗ ηi) =
∑
j,k

cjk(φk ⊗ ξj ) =
∑
j

K̂j (U, ηi)g ⊗ ξj ∀g ∈ H (36a)

where K̂j (U, ηi) is uniquely determined bounded linear operator on HS with the norm
‖K̂j (U, ηi)‖HS

� 1, such that the relation

〈f ⊗ ξj , Û (g ⊗ ηi)〉 = 〈f, K̂j (Û , ηi)g〉 (36b)
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is valid for any ∀f, g ∈ HS. In physical notation

K̂j (U, ηi) = 〈ξj , Ûηi〉H(ν,N;Y ) j = 1, 2, . . . . (36c)

In the considered case when the measure ν(·) in the direct integral H(ν,N;Y ) is finite, all
elements of the orthonormal base of measurabilityY = {en} belong toH(ν,N;Y ). From (36a)
it follows then that for any vectors g, f ∈ HS, for any E ∈ FB and any index n = 1, . . . , l,
where l is equal to ν-sup{N(ω), ω ∈ �}, we have

〈f ⊗ en, (Î ⊗ X̂ν(E))Û(g ⊗ ηi)〉
=

∫
ω∈E

〈
f,

{∑
j

K̂j (U, ηi)〈en(ω), ξj (ω)〉H(ω)

}
g

〉
HS

ν(dω) (36d)

where for the left-hand side in (36d) the following bound is valid:

|〈f ⊗ en, (Î ⊗ X̂ν(E))Û(g ⊗ ηi)〉| �
√
ν(E)||f || ||g||

∀f, g ∈ HS ∀E ∈ FB.
(36e)

Due to (36d) for any E ∈ FB the sequence∫
ω∈E

〈
f,

{ m∑
j=1

K̂j (U, ηi)〈en(ω), ξj (ω)〉H(ω)

}
g

〉
HS

ν(dω)

=
〈
f,

{∫
ω∈E

m∑
j=1

K̂j (U, ηi)〈en(ω), ξj (ω)〉H(ω)ν(dω)

}
g

〉
HS

(36f)

converges as m→∞ for any g, f ∈ HS. Consequently, there exists [23] the bounded linear
operator on HS, which we denote∫

ω∈E
K̂

(U)
in (ω)ν(dω) (36g)

such that for any E ∈ FB∫
ω∈E

m∑
j=1

K̂j (U, ηi)〈en(ω), ξj (ω)〉H(ω)ν(dω)
W−→

∫
ω∈E

K̂
(U)
in (ω)ν(dω) (36h)

as m→∞.
For the operator-valued densities in (36h) we have the relation〈

f,

{ m∑
j=1

K̂j (U, ηi)〈en(ω), ξj (ω)〉H(ω)

}
g

〉
HS

W−→〈f, K̂(U)
in (ω)g〉HS (36i)

as m→∞, which is valid for any f, g ∈ HS.
Thus, for any g, f ∈ HS we can rewrite (36d) in the form

〈f ⊗ en, (Î ⊗ X̂ν(E))Û(g ⊗ ηi)〉 =
∫
ω∈E

〈f, K̂(U)
in (ω)g〉ν(dω) (37a)

with K̂
(U)
in (·) being a ν-measurable function on � with values being linear operators on HS

defined for any g ∈ HS ν-almost everywhere on � and such that (36g) is a bounded linear
operator on HS for any E ∈ FB.

From (36i) it follows that K̂(U)
in (ω) = 0̂ for n > N(ω), ν-a.e. on �.

The bounded operator adjoint to the bounded operator (36g) is given by∫
ω∈E

(K̂
(U)
in (ω))+ν(dω) (37b)
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with the operator-valued density (K̂
(U)
in (ω))+ satisfying the relation〈

f,

{ m∑
j=1

(K̂j (U, ηi))
+〈ξj (ω), en(ω)〉H(ω)

}
g

〉
HS

W−→〈f, (K̂(U)
in (ω))+g〉HS m→∞ (37c)

for any f, g ∈ HS.
Due to (28d) and (33b) and (36a), (36i) we also have that for any g ∈ HS, ∀n �

N(ω), ∀E ∈ FB the relation

((Î ⊗ Q̂nX̂ν(E))Û(g ⊗ ηi))(ω) = χE(ω)(K̂
(U)
in (ω)g ⊗ en(ω)) (37d)

is valid ν-a.e. on �.
Substituting (37d) into (35c), we get the following relation:

E|ηi〉〈ηi |[(Î ⊗ Q̂nX̂ν(E))Û ] =
∫
ω∈E

K̂
(U)
in (ω)〈ηi(ω), en(ω)〉H(ω)ν(dω) (37e)

and, consequently, the operator-valued function K̂
(U)
in (ω) is the Radon–Nikodym derivative of

the operator-valued measure (35c) with respect to the finite complex scalar measure

µin(dω) = 〈ηi(ω), en(ω)〉ν(dω). (37f)

The last statement of the lemma is based on the fact that from (37d) it follows that in case
E = � we have∫

�

N(ω)∑
n=1

〈K̂(U)
in (ω)ψ, K̂

(U)
in (ω)ψ〉HSν(dω) = ||ψ ||2 ∀ψ ∈ HS. (37g)

�

It is easy to prove also the following lemma.

Lemma 2. Let ηi, ηj ∈ H(ν,N) be some orthogonal unit vectors, then the ν-measurable
operator-valued functions K̂

(U)
in (ω) and K̂

(U)
jn (ω), given by (35) for unit vectors ηi and ηj ,

respectively, satisfy the following orthonormality relation
∫
�

N(ω)∑
n=1

(K̂
(U)
jn (ω))+K̂

(U)
in (ω)ν(dω) = δji Î . (38)

Consider now the expressions for the operator-valued measures (32a), which are (up to phase
equivalence) invariants for the class Gγ .

Definition. For any indexes i = 1, . . . , Nγ , k = 1, . . . , kγ (α(i)
γ ) and n = 1, . . . , l, where the

positive integer l is equal to ν-sup{N(ω), ω ∈ �}, define for any ψ ∈ HS the ν-measurable
operator-valued function V̂

(k)
in (ω) by the relation

((Î ⊗ Q̂nX̂ν(E))Ûν(ψ ⊗ ϕik))(ω) = χE(ω)(V̂
(k)
in (ω)ψ ⊗ en(ω)) (39a)

ν-a.e. on �. Here ∀n � N(ω).

The correctness of this definition follows from lemma 1.
It follows from (39a) that under the unitary transforms (33a), (33i) the operators V̂ (k)

in (ω)

are transformed as

V̂
(k)
in (ω) =

∑
p=1,...,kγ (α

(i)
γ )

m=1,...,N(ω)

ζ (z)mn(ω)ϑ
(i)
kp
ˆ̃
V

(p)

im (ω). (39b)
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From lemma 2 we have the following orthonormality relation for operators V̂ (k)
in (ω):

∫
�

N(ω)∑
n=1

(V̂
(p)

jn (ω))+V̂
(k)
in (ω)ν(dω) = δjiδpkÎ . (39c)

Considering (35b), (31d) and (39a), we get the following integral representations for the
operator-valued measures (32a):

Â(i)
γ (E) = E

σ̂
(i)
ν

[(Î ⊗ X̂ν(E))Ûν]

= (kγ (α
(i)
γ ))−1

∫
ω∈E

∑
n=1,...,N(ω)

k=1,...,kγ (α
(i)
γ )

V̂
(k)
in (ω)〈ϕik(ω), en(ω)〉H(ω)ν(dω) (40a)

Âγ (E) = Eσ̂ν [(Î ⊗ X̂ν(E))Ûν]

=
Nγ∑
i=1

α(i)
γ

∫
ω∈E

∑
n=1,...,N(ω)

k=1,...,kγ (α
(i)
γ )

V̂
(k)
in (ω)〈ϕik(ω), en(ω)〉H(ω)ν(dω). (40b)

The integral representations for the ‘i’ instruments (30c), which are invariants for the classes
Gγ , [Gγ ], have the form

T̂i(E)[Â] = (kγ (α
(i)
γ ))−1

∫
ω∈E

∑
n=1,...,N(ω)

k=1,...,kγ (α
(i)
γ )

(V̂
(k)
in (ω))+Â V̂

(k)
in (ω)ν(dω) (41a)

while for the whole instrument we have

T̂ (E)[Â] =
∑

i=1,...,Nγ

α(i)
γ

∫
ω∈E

∑
n=1,...,N(ω)

k=1,...,kγ (α
(i)
γ )

(V̂
(k)
in (ω))+Â V̂

(k)
in (ω)ν(dω). (41b)

The integrand sums in (40a), (40b) and (41a), (41b) are invariant under the transforms (33a),
(33i), that is, ν-a.e. on �.

∑
n=1,...,N(ω)

k=1,...,kγ (α
(i)
γ )

V̂
(k)
in (ω)〈ϕik(ω), en(ω)〉H(ω) =

∑
n=1,...,N(ω)

k=1,...,kγ (α
(i)
γ )

ˆ̃
V

(k)

in (ω)〈ϕ̃ik(ω), e(z)n (ω)〉H(ω) (42a)

and∑
n=1,...,N(ω)

k=1,...,kγ (α
(i)
γ )

(V̂
(k)
in (ω))+ÂV̂

(k)
in (ω) =

∑
n=1,...,N(ω)

k=1,...,kγ (α
(i)
γ )

(
ˆ̃
V

(k)

in (ω))
+Â

ˆ̃
V

(k)

in (ω). (42b)

If we denote

q
(k)
in (ω) = 〈en(ω), ϕik(ω)〉H(ω) (43a)

then in (34a) the densities πi(ω) of the probability scalar measures ν(i)γ (·), i = 1, . . . , Nγ with
respect to the finite positive scalar measure ν(·) can be represented as

πi(ω) = (kγ (α
(i)
γ ))−1

∑
n=1,...,N(ω)

k=1,...,kγ (α
(i)
γ )

|q(k)in (ω)|2 (43b)

and, consequently,

ν(i)γ (dω) = (kγ (α
(i)
γ ))−1

∑
n=1,...,N(ω)

k=1,...,kγ (α
(i)
γ )

|q(k)in (ω)|2ν(dω). (43c)
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The operator-valued measures (40a) can be rewritten as

Â(i)
γ (E) = E

σ̂
(i)
ν

[(Î ⊗ X̂ν(E))Ûν]

= (kγ (α
(i)
γ ))−1

∫
ω∈E

∑
n=1,...,N(ω)

k=1,...,kγ (α
(i)
γ )

V̂
(k)
in (ω)(q

(k)
in (ω))

∗ν(dω). (43d)

The following orthonormality relation is valid for the scalar products, introduced by (43a):∫
�

∑
n=1,...,N(ω)

(q
(k)
jn (ω))

∗
q
(p)

in (ω)ν(dω) = δjiδkp. (43e)

We also have

ν(i)γ ≺ νγ ≺ ν (43f)

where [ν(·)] = [P̂R(·)]. Recall that in (43f ) only the probability scalar measures ν(i)γ (·), i =
1, . . . , Nγ and νγ (·) are invariants of the class Gγ .

Let introduce the double index (i, k) → i and repeat in the sum in (41b) the number αi
as many times as its multiplicity k(αi) is. Then we can present our result in the form of the
following theorem.

In this theorem no reference is made to invariance properties, the invariance aspects are
taken up again in the next sections.

Theorem 1 (The most general form of an integral representation of an instrument). Let
(�, FB) be a standard Borel space. For any instrument T̂ (·)[·] : FB × L(HS) → L(HS)

there exist:

• a finite positive scalar measure ν(·) on (�, FB);
• a family {V̂in(ω), ω ∈ �; i = 1, . . . , N0; n = 1, . . . , N(ω)} of ν-measurable operator-

valued functions on �, such that for any ∀E ∈ FB and any indexes i, n∫
ω∈E

V̂in(ω)ν(dω) (44a)

is a bounded linear operator on HS and the following orthonormality relation is valid:∫
�

∑
n=1,...,N(ω)

V̂ +
jn(ω)V̂in(ω)ν(dω) = δji Î (44b)

• a sequence of positive numbers {α1, α2, . . .}, satisfying

N0∑
i=1

αi = 1 N0 �∞ (44c)

such that the instrument can be presented as

T̂ (E)[Â] =
∑

i=1,...,N0

αi

∫
ω∈E

N(ω)∑
n=1

V̂ +
in(ω)Â V̂in(ω)ν(dω) (44d)

on all of HS for ∀E ∈ FB,∀Â ∈ L(HS).
Furthermore, for any indexes i, n the relation

(Ŵinψ)(ω) = V̂in(ω)ψ ∀ψ ∈ HS (44e)

holding ν-a.e. on �, defines the bounded linear operator Ŵin : HS → L2(�, ν;HS) with
the norm ||Ŵin|| � 1.
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In the general case the form of the integral representation of an instrument (44a)–(44d)
differs from that given by (20) cf [10,12], where the orthogonality relation (44b) is not present.
The double index in (44a)–(44d) (in comparison with the single index in (20)) cannot be
presented as a single one since these indexes enter the orthonormality relation (44b) in different
manner. In contradistinction to the arguments presented in [12], we prove (see lemma 1) that
the representation (44d) through operator-valued functions V̂in(ω) is valid on all of HS.

In the case of discrete character of the measure ν(·) the representation (44d), due to the
orthogonality relation (44b), differs also from formulae, of a somewhat similar form, available
in the physical literature [18, 19].

3.3. Stochastic realizations of an instrument

For the definite index i the operators V̂ (k)
in (ω) in (41b) are defined with respect to the concrete

choice of the basis {ϕik, k = 1, . . . , kγ (α(i)
γ )} in the subspace p̂iH(ν,N;Y ) and the concrete

decomposition (33e) of the unity operator on H(ν,N;Y ). If in the statistical realization γ ,
given by (24b) and unitarily equivalent to the statistical realization (28e) on H(ν,N;Y ), the
density operator σ̂R has eigenvalues α(i)

γ with multiplicity kγ (α
(i)
γ ) �= 1, as well as if in the

statistical realization γ the projection-valued measure P̂R(·) on (�, FB) is not simple (that
is, for some ω ∈ �, Nγ (ω) �= 1), then even for the definite statistical realization we have a
plenitude of integral representations (44d) of the corresponding instrument.

Moreover, the operators V̂
(k)
in (ω)are defined with respect to the concrete finite positive

scalar measure ν(·) from the equivalence class [ν(·)] = [X̂(·)] = [P̂R(·)]. Although
[ν(·)] = [X̂(·)] = [P̂R(·)] is an invariant of the classes Gγ , [Gγ ], the measure ν(·) itself
is not an invariant of these classes and can be chosen in many ways.

Thus, in (41b) the positive scalar measure ν(·) and operators V̂ (k)
in (ω), defined with respect

to this measure, are not invariants of the classes Gγ , [Gγ ] of statistical realizations.
However, there is a definite correspondence between the classes Gγ , [Gγ ] of statistical

realizations and integral representations of the instrument, corresponding to these classes.
In this section we analyse this correspondence.
Introduce the following definition.

Definition. Consider a triple λ = {βλ,Hλ, Vλ}, consisting of:

• a family βλ of positive coefficients β(i)
λ > 0, summing up to identity, where every coefficient

may be repeated kλ(β
(i)
λ ) times:

βλ =
{
{β(i)

λ , kλ(β
(i)
λ )}|β(i)

λ > 0, i = 1, . . . , Ñλ;
∑
i

β
(i)
λ kλ(β

(i)
λ ) = 1

}
(45a)

• a family Hλ of complex scalar measures, absolutely continuous with respect to a finite
positive scalar measure ν̃(·) and satisfying the orthonormality relation:

Hλ =
{
q̃
(k)
in (ω)ν̃(dω)|ω ∈ �; i = 1, . . . , Ñλ; k = 1, . . . , kλ(β

(i)
λ ); n = 1, . . . , Ñ(ω);

∫
�

Ñ(ω)∑
n=1

(q̃
(k)
jn (ω))

∗q̃(p)in (ω)ν̃(dω) = δkpδji

}
(45b)

where in (45a), (45b) the positive integers Ñλ, Ñ(ω) may be infinite;
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• a family Vλ of ν̃ -measurable operator-valued functions Ŵ
(k)
in (·) on �, satisfying the

orthonormality relation,

Vλ =
{
Ŵ

(k)
in (ω)|ω ∈ �, i = 1, . . . , Ñλ; k = 1, . . . , kλ(β

(i)
λ ); n = 1, . . . Ñ(ω);

∫
�

Ñ(ω)∑
n=1

(Ŵ
(k)
jn (ω))

+Ŵ
(p)

in (ω)ν̃(dω) = δkpδji Î

}
(45c)

and such that for all indexes i, n, k and any E ∈ FB∫
ω∈E

Ŵ
(k)
in (ω)ν̃(dω)

∫
ω∈E

∑
n=1,...,Ñ(ω),

k=1,...,kλ(β
(i)
λ

)

Ŵ
(k)
in (ω)(q

(k)
in (ω))

∗ν̃(dω) (45d)

are bounded linear operators on HS;

We shall call λ = {βλ,Hλ, Vλ} a stochastic realization of an instrument, if the instrument
can be represented in the integral form

T̂ (E)[Â] =
∑
i,k

β
(i)
λ

∫
ω∈E

Ñ(ω)∑
n=1

(Ŵ
(k)
in (ω))+ÂŴ

(k)
in (ω) ν̃(dω) (45e)

on all of HS. We shall say that we have different stochastic realizations of the same instrument
if the triples {β,H, V } are different.

The following statement follows from the consideration, presented in section 3.2 and, in
particular, from the formulae (41)–(43).

Proposition 1. Let (�, FB) be a standard Borel space. For any instrument

T̂ (·)[·] : FB × L(HS)→ L(HS)

there exists a stochastic realization.

Let λ be a stochastic realization of an instrument. Then, for example, any triple λ′, the
elements of which are connected with the elements of λ by the following transformation ν̃-a.e:

βλ = βλ′ ν̃ ∼ ν̃ ′ Ñ(ω) = Ñ ′(ω) (46a)

q̃
′(k)
in (ω) =

∑
m=1,...,Ñ(ω)

p=1,...,kλ(β
(i)
λ

)

a(1)nm(ω)b
(1)
kp (ω)q̃

(p)

im (ω)

√
dν̃

dν̃ ′
(46b)

Ŵ
′(k)
in (ω) =

∑
m=1,...,Ñ(ω),

p=1,...,kλ(β
(i)
λ

)

a(2)nm(ω)b
(2)
kp (ω)Ŵ

(p)

im (ω)

√
dν̃

dν̃ ′
(46c)

where {a(1,2)nm (ω)} and {b(1,2)kp (ω)} are any unitary matrices of complex-valued ν̃-measurable
functions, is also a stochastic realization of the same instrument.

Introduce now the equivalence relation on the space of all possible stochastic realizations
of the given instrument.

We shall say that two stochastic realizations λ and λ′ are equivalent if there exist a real
number ξ , a unitary matrix {ζmn(ω)} of complex-valued measurable functions and unitary
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matrices {ϑ(i)
kp }, i = 1, . . . , Ñλ of complex numbers such that ν̃-a.e.:

βλ = βλ′ ν̃ ∼ ν̃ ′ Ñ(ω) = Ñ ′(ω) (47a)

q̃
(k)
in (ω) =

∑
m=1,...,Ñ(ω),

k=1,...,kλ(β
(i)
λ

)

ζnm(ω)ϑ
(i)
kp q̃

′(p)
im (ω)

√
dν̃ ′

dν̃
(47b)

Ŵ
(k)
in (ω) = eiξ

∑
m=1,...,Ñ(ω),

k=1,...,kλ(β
(i)
λ

)

ζnm(ω)ϑ
(i)
kp Ŵ

′(p)
im (ω)

√
dν̃ ′

dν̃
. (47c)

Denote the equivalent class by Sλ if it contains the stochastic realization λ. Stochastic
realizations from the class Sλ have the following invariants.

The type [ν̃], the dimension function {N(ω), ω ∈ �}, the familyβλ of positive coefficients,
the probability scalar measures

ν̃
(i)
λ (dω) = (kγ (β

(i)
λ ))−1

∑
n=1,...,Ñ(ω),

k=1,...,kλ(β
(i)
λ

)

|q̃(k)in (ω)|2ν̃(dω) (48a)

ν̃λ(dω) =
∑

i=1,...,Ñλ

β
(i)
λ kλ(β

(i)
λ )ν̃

(i)
λ (dω) (48b)

and the operator-valued measures

ˆ̃
A

(i)

λ (E) = (kγ (β
(i)
λ ))−1

∫
ω∈E

∑
n=1,...,Ñ(ω)

k=1,...,kλ(β
(i)
λ

)

Ŵ
(k)
in (ω)(q̃

(k)
in (ω))

∗ν̃(dω) (48c)

ˆ̃
Aλ(E) =

∑
i=1,...,Ñλ

β
(i)
λ kλ(β

(i)
λ ) Â

(i)
λ (E) (48d)

which are invariants of Sλ up to phase equivalence.
Thus, we derived the following set of invariants of the equivalence class Sλ

[ν̃], {Ñλ(ω), ω ∈ �}, βλ, {ν̃(i)λ (·)}, ν̃λ(·), { ˆ̃A
(i)

λ (·)}, ˆ̃Aλ(·). (49)

Introduce also the equivalence relation on the space S = {Sλ, λ ∈ I} of equivalence classes
Sλ of stochastic realizations.

We shall say that two equivalence classes Sλ and Sλ′ are equivalent if for any stochastic
realization λ from the class Sλ and any stochastic realization λ′ from the class Sλ′ there exist
a real number ξ , a unitary matrix {ζmn(ω)} of complex-valued measurable functions and a
unitary matrix {ϑ(i)

kp } of complex numbers such that ν̃-a.e.:

Ñλ = Ñλ′ kλ(β
(i)
λ ) = kλ′(β

(i)
λ ) ∀i = 1, . . . , Ñλ

ν̃ ∼ ν̃ ′ Ñ(ω) = Ñ ′(ω)
(50a)

Ŵ
(k)
in (ω) = eiξ

∑
m=1,...,Ñ(ω)

k=1,...,kλ(β
(i)
λ

)

ζnm(ω)ϑ
(i)
kp Ŵ

′(p)
im (ω)

√
dν̃ ′

dν̃
(50b)

q̃
(k)
in (ω) =

∑
m=1,...,Ñ(ω)

k=1,...,kλ(β
(i)
λ

)

ζnm(ω)ϑ
(i)
kp q̃

′(p)
im (ω)

√
dν̃ ′

dν̃
. (50c)

Denote the equivalent class by [Sλ] if it contains the class Sλ.
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The class [Sλ] has the following set of invariants

[ν̃], {Ñλ(ω), ω ∈ �}, Ñλ, {kλ(β(i)
λ )}{ν̃(i)λ (·)}, { ˆ̃A

(i)

λ (·)}. (51)

Consider now the correspondence between the different classes of stochastic and statistical
realizations of the same instrument.

Theorem 2. There is a one-to-one correspondence between the space S = {Sλ, λ ∈ I} of
equivalence classes of stochastic realizations and the space G = {Gγ , γ ∈ >} of classes of
unitarily equivalent statistical realizations of the instrument. The element of S corresponds to
the element of G if and only if they have the same sets of invariants, given by (49) and (32c),
respectively.

Every statistical realization from the class Gγ induces a unique, up to equivalence,
stochastic realization from the corresponding equivalence class Sλ and vice versa.
Theorem 3. There is a one-to-one correspondence between the space [S] = {[Sλ], λ ∈ I}
of equivalence classes [Sλ] of stochastic realizations and the space [G] = {[Gγ ], γ ∈ >} of
equivalence classes of statistical realizations of the instrument. The element of [S] corresponds
to the element of [G] if and only if they have the same sets of invariants, given by (51) and (32d),
respectively.

Every statistical realization from the class [Gγ ] induces a unique, up to equivalence,
stochastic realization from the corresponding equivalence class [Sλ] and vice versa.

3.4. Quantum stochastic representation of an instrument

For further applications in the quantum measurement theory (cf section 4) we introduce the
following notion.

Definition. Let λ = {βλ,Hλ, Vλ} be a stochastic realization of an instrument. We shall call λ
quantum stochastic if for every ν-measurable operator-valued function Ŵ (k)

in (ω) in (45c) there
exists a ν-measurable operator-valued function Ĵ

(k)
in (ω) such that, ν-a.e. on �, Ŵ

(k)
in (ω) can

be represented in the factorized form

Ŵ
(k)
in (ω) = Ĵ

(k)
in (ω)q̃

(k)
in (ω). (52a)

The integral representation of an instrument through the elements of a quantum stochastic
realization is given by

T̂ (E)[Â] =
∑
i,k

β
(i)
λ

∫
ω∈E

N(ω)∑
n=1

(Ĵ
(k)
in (ω))

+Â Ĵ
(k)
in (ω)|q̃(k)in (ω)|2 ν̃(dω). (52b)

The following statement follows from theorem 1.

Proposition 2. For any instrument there exists a quantum stochastic realization.
Proof. Take some complex scalar measures µin(·), i = 1, . . . , N0, n = 1, . . . , N(ω)

equivalent to the positive scalar measure ν(·) in theorem 1. Let q̃in(ω) be the Radon–Nykodim
derivative of the measure µin(·) with respect to the measure ν(·). The ν-measurable functions
q̃in(ω) satisfy the relation q̃in(ω) �= 0 ν-a.e.

We can always choose the measures µin(·) in such a way that∫
�

∑
n=1,...,N(ω)

q̃∗jn(ω)q̃in(ω)ν(dω) = δji . (52c)

For example, we can take q̃in(ω) = fi(ω)gn(ω) with scalar complex-valued functions fi ∈
L2(�, ν), i = 1, . . . , N0 and scalar complex-valued functions gn ∈ S(�, ν), n = 1, . . . , l,
where l is equal to ν-sup{N(ω), ω ∈ �}, such that:
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• the elements of both sets of functions fi(ω) �= 0, gn(ω) �= 0 ν-a.e.;
• the complex-valued functions fi(ω) are mutually orthogonal 〈fi, fj 〉L2 = δij ;
• the complex-valued functions gn(ω) are normalized ν-a.e. on �, that is,∑

n=1,...,N(ω)

|gn(ω)|2 = 1. (52d)

Then it is easy to show that we get (45a).
Introducing in (44) the operators

Ĵin(ω) = V̂in(ω)

q̃in(ω)
(52e)

defined ν-a.e. and satisfying the orthogonality relation∫
�

∑
n=1,...,N(ω)

Ĵ+
jn(ω)Ĵin(ω)q̃

∗
jn(ω)q̃in(ω)ν̃(dω) = δji Î (52f)

we derive the statement of proposition 2. �
If in the class S̃λ there exists a quantum stochastic realization for which

Ŵ
(k)
in (ω) = Ĵ(i)(ω)q̃

(k)
in (ω) (53a)

then any unitary transformation (47) of the elements of a quantum stochastic realization (53a)
gives a quantum stochastic realization with different complex densities q̃ ′(k)in (ω) but the same
(up to phase equivalence) operators Ĵ(i)(ω). Consequently, the considered class S̃λ (and
[S̃λ]) consists of only quantum stochastic realizations of the type (53a). The operator-valued
measures (48c), invariant for this class [S̃λ], admit the integral representation

ˆ̃
A

(i)

λ (E) =
∫
ω∈E

Ĵ(i)(ω)ν̃
(i)
λ (dω) ∀E ∈ FB ∀i = 1, . . . , Ñγ (53b)

which is the same for all quantum stochastic realizations of the class [S̃λ].

Since for any i = 1, . . . , Ñλ all operator-valued measures ˆ̃A
(i)

λ (·) and all probability
scalar measures ν̃(i)λ (·) are invariants of the class [S̃λ], the operator-valued functions Ĵ(i)(ω),

being the Radon–Nykodim derivatives d ˆ̃A
(i)

λ

dν̃(i)λ

, are also invariants of the class [S̃λ] (up to phase

equivalence). That is why, we shall use for these operators the notation Ĵ
(i)
λ (ω) and call the

quantum stochastic realization (53a) and the corresponding classes S̃λ and [S̃λ] invariant.
For the invariant class S̃λ the integral representation of the instrument, corresponding to

any invariant quantum stochastic realization from this class is the same and is given only
through the invariants of S̃λ

T̂ (E)[Â] =
∑
i

β
(i)
λ kλ(β

(i)
λ )

∫
ω∈E

(Ĵ
(i)
λ (ω))+Â Ĵ

(i)
λ (ω)ν̃

(i)
λ (dω). (53c)

Furthermore, for any invariant quantum stochastic realization from the invariant class S̃λ the
orthonormality relations in (45b) and (45c) for complex measures and for the operator-valued
functions, respectively, can be rewritten as∫

�

π̃
(kp)

ji (ω)ν̃(dω) = δkpδji Î (53d)
∫
�

(Ĵ
(j)

λ (ω))+Ĵ
(i)
λ (ω)π̃

(kp)

ji (ω)ν̃(dω) = δkpδji Î (53e)
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with the following notation for

π̃
(kp)

ji (ω) =
∑

n=1,...,Ñ(ω)

(q̃
(k)
jn (ω))

∗q̃(p)in (ω). (53f)

The probability scalar measures ν̃(i)λ (·), presented by (48a) and invariant for the class S̃λ, have
the probability densities

π̃i(ω) = π̃ii (ω) (53g)

π̃ji(ω) = (kλ(β
(i)
λ ))−1

∑
k=1,...,kλ(β

(j)

λ ),

π̃
(kk)
j i (53h)

with respect to the finite positive scalar measure ν̃(·).
Let G̃γ and [G̃γ ] be the classes of statistical realizations, corresponding, due to theorems 2,

3 to the invariant classes S̃λ and [S̃λ], respectively. We shall call the classes of statistical
realizations G̃γ and [G̃γ ] invariant.

Using the notations of (43a), (43e) we, further, denote similar to (53f )–(53h):

π
(kp)

ji (ω) =
∑

n=1,...,N(ω)

(q
(k)
jn (ω))

∗q(p)in (ω) (54a)

and

πji(ω) = (kγ (α
(i)
γ ))−1

∑
k=1,...,kγ (α

(j)
γ ),

π
(kk)
ji . (54b)

Then, obviously, the probability densities πi(ω) of the probability scalar measure ν(i)γ (·),
i = 1, . . . , Nγ , given by (43b), are

πi(ω) = πii(ω) � 0 (54c)

and the following orthonormality relations are valid:∫
�

πji(ω)ν(dω) = δji ∀j, i (54d)
∫
�

(Ĵ(j)
γ (ω))+Ĵ(i)

γ (ω)πji(ω)ν(dω) = δji Î . (54e)

The following statement is valid due to theorem 2 and the definition of an invariant class [G̃γ ].

Theorem 4. Let [G̃γ ] be an invariant equivalence class of statistical realizations. Then there
exist:

• the unique family H̃γ of complex scalar measures absolutely continuous with respect to a
finite positive scalar measure ν(·) and satisfying the orthonormality relation:

H̃γ =
{
πji(ω)ν(dω)|ω ∈ �; i, j = 1, . . . , Nλ;

∫
�

πji(ω)ν(dω) = δji

}
(55a)

(the positive integer Nγ may be infinite);
• the unique (up to phase equivalence) family Ṽγ of ν -measurable operator-valued functions
Ĵ(i)

γ (·) on �, satisfying the orthonormality relation,

Ṽγ =
{
Ĵ(i)

γ (ω)|ω ∈ �, i = 1, . . . , Nλ,

∫
�

(Ĵ(j)
γ (ω))+Ĵ(i)

γ (ω)πji(ω)ν(dω) =δji Î
}

(55b)
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and such that for any E ∈ FB∫
ω∈E

Ĵ(i)
γ (ω)πii(ω)ν(dω) i = 1, . . . , Nγ (55c)

is a bounded linear operator on HS and for any index i the relation

(Ŵiψ)(ω) = Ĵ(i)
γ (ω)ψ ∀ψ ∈ HS (55d)

holding ν-a.e. on �, defines the bounded linear operator Ŵi : HS → L2(�, ν(i)γ (·);HS)

with the norm ||Ŵi || = 1;
such that for all statistical realizations from the invariant equivalence class [G̃γ ] the
integral representation (41b) for any ‘i’ instrument has the same form:

T̂ (i)
γ (E)[Â] =

∫
ω∈E

(Ĵ(i)
γ (ω))+Â Ĵ(i)

γ (ω)ν(i)γ (dω) (55e)

and is given only through the invariants of [G̃γ ]. In (55e) the probability scalar measures

ν(i)γ (dω) = πii(ω)ν(dω) i = 1, . . . , Nγ (55f)

are invariants of the class [G̃γ ].

The families (55a) and (55b) are functional invariants of the invariant class [G̃γ ].

Definition. We shall call the integral representation of the instrument

T̂ (E)[Â] =
∑
i

α(i)
γ kγ (α

(i)
γ )

∫
ω∈E

(Ĵ(i)
γ (ω))+Â Ĵ(i)

γ (ω)ν(i)γ (dω) (56)

corresponding to the invariant class G̃γ , a quantum stochastic representation of the instrument.

We would like to point out that, in general, invariants of the invariant class G̃γ such as the
values of the multiplicity functionN(ω), ω ∈ � and the multiplicities kλ(α

(i)
λ ), i = 1, . . . , Nγ

may be greater than one.
Let now consider the description of a quantum measurement, described by the instrument

represented by the quantum stochastic representation (56).
From (56) and (48a), (48b) it follows that the probability scalar measure (5), defining a

probability distribution of outcomes, is given by

µρS
(E) =

Nγ∑
i=1

α(i)
γ kγ (α

(i)
γ )

∫
ω∈E

tr[τ̂ (i)γ (ω, ρ̂S)] ν
(i)
γ (dω) (57a)

through the invariants of the considered class G̃γ . In (57a) we introduced the notation

τ̂ (i)γ (ω, ρ̂S) = Ĵ(i)
γ (ω)ρ̂SĴ

(i)+
γ (ω) ∀i = 1, . . . , Nγ (57b)

for the un-normalized ‘i’ statistical operators being invariants of the class [G̃γ ] for the given
ρ̂S. Introducing also the probability scalar measures

µ(i)
γ (dω, ρ̂S) = tr[τ̂ (i)γ (ω, ρ̂S)] ν

(i)
γ (dω) (57c)

for ∀i = 1, . . . , Nγ , we can rewrite (57a) in the form

µρS
(dω) =

Nγ∑
i=1

α(i)
γ kγ (α

(i)
γ )µ(i)

γ (dω, ρ̂S). (57d)
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For the given initial state ρ̂S of a quantum system, the probability scalar measures (57c) are
invariants of the class [G̃γ ].

The family of posterior states {ρ̂(ω, ρ̂S), ω ∈ �}, defined by (9a), is given, µρS
-a.e. on

�, by the relation

ρ̂(ω, ρ̂S) =
∑

i α
(i)
γ kγ (α

(i)
γ )πii(ω)τ̂

(i)
γ (ω, ρ̂S)∑

j α
(j)
γ kγ (α

(j)
γ )πjj (ω) tr[τ̂ (j)γ (ω, ρ̂S)]

. (57e)

The posterior state (57e) can be rewritten as a sum

ρ̂(ω, ρ̂S) =
∑
i

θ (i)γ (ω)τ̂
(i)
γ,N (ω, ρ̂S) (57f)

of normalized statistical operators

τ̂
(i)
γ,N (ω, ρ̂S) =

τ̂ (i)γ (ω, ρ̂S)

tr[τ̂ (i)γ (ω, ρ̂S)]
∀i = 1, . . . , Nγ (57g)

which are invariants for the class [G̃γ ], with statistical weights

θ(i)γ (ω) = α(i)
γ kγ (α

(i)
γ )πii(ω) tr[τ̂ (i)γ (ω, ρ̂S)]∑

j α
(j)
γ kγ (α

(j)
γ )πjj (ω) tr[τ̂ (j)γ (ω, ρ̂S)]

(57h)

which are also invariants of the class [G̃γ ].
The prior (unconditional) state of a quantum system, defined by (10) in case E = �, can

be represented as

ρ̂(�, ρ̂S) =
Nγ∑
i=1

α(i)
γ kγ (α

(i)
γ )

∫
�

τ̂ (i)γ (ω, ρ̂S)ν
(i)
γ (dω)

=
Nγ∑
i=1

α(i)
γ kγ (α

(i)
γ )

∫
�

τ̂
(i)
γ,N (ω, ρ̂S)µ

(i)
γ (dω, ρ̂S). (57i)

Thus, we see that different quantum stochastic representations of the same instrument,
corresponding to different invariant classes G̃γ of unitarily equivalent statistical realizations,
induce different decompositions (57a) and (57f ) for the probability distribution of outcomes
and the family of posterior states.

4. Quantum stochastic measurement model

The operational approach, being very important for the formalization of the complete statistical
description of any generalized quantum measurement, does not, however, in general, give the
possibility to include into consideration the description of the random behaviour of the quantum
system under a single measurement.

However, the description of stochastic, irreversible in time behaviour of a quantum system
under a single measurement is very important, in particular, in the case of continuous in time
measurement, where the evolution of the continuously observed open system differs from that
described by reversible in time solutions of the Schrödinger equation.

The operational approach also does not specify a description of a generalized direct
quantum measurement where we have to describe the direct interaction between a classical
and a quantum systems.

We would like to emphasize again that in quantum theory any physically based problem
must be formulated in unitarily equivalent terms and the description of a generalized direct
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quantum measurement, cannot be simply reduced to the quantum theory description of a
measuring process. We cannot specify definitely neither the interaction, nor the quantum state
of a measuring device environment, nor describe a measuring device only in quantum theory
terms. In fact, under such a scheme the description of a direct quantum measurement is simply
referred to the description of a direct measurement of some observable of an environment of
a measuring device. Thus, the problem still remains.

We recall that for the case of discrete outcomes the original von Neumann approach [1]
describes specifically a direct quantum measurement and gives both the complete statistical
description of a measurement and the complete stochastic description of the random behaviour
of the quantum system under a single measurement.

Accordingly, the aim of the present section is to introduce, using the mathematical results
of section 3, a new general approach, the QSA, to the description of a generalized direct
quantum measurement, which could incorporate both the above-mentioned features of von
Neumann’s approach and the features of the operational approach, in the sense that this new
approach would be based only on unitary invariants of a measuring process and could give the
complete statistical description of a generalized direct measurement and the complete stochastic
description of the random behaviour of a quantum system under a single measurement.

We consider also the description in the frame of the QSA (proposition 4) of a special kind
of indirect measurement of a quantum system, where a direct measurement on some other
quantum system, entangled with the one considered, is described by a projection-valued POV
measure.

Let us come back to the notion of a von Neumann measuring process of the observable (1),
presented by the formula (17).

Fix the pair η, {ηm} in (17) and consider the class Gγ of statistical realizations of the
instrument (14c), which are unitarily and phase equivalent to the statistical realization

γ = {K, |η〉〈η|, X̂γ (·), Û} (58a)

with a projection-valued measure X̂γ (E) =
∑

λm∈E |ηm〉〈ηm| of the discrete type and a unitary

operator Û , satisfying (16). The class Gγ has the following invariants (see (32c)):

[X̂γ (·)] NXγ
= 1 αγ = {1} Nγ = 1 kγ (1) = 1 (58b)

νγ (E) =
∑
λm∈E

|〈η, ηm〉|2 Âγ (E) =
∑
λm∈E

〈η, ηm〉P̂m (58c)

where for any index m, operators P̂m are projections defined by (15).
For all possible classes Gγ the invariants, presented in (58b), are the same. Hence, in

particular, projection-valued measures X̂γ in statistical realizations from different classes Gγ

are unitarily equivalent to each other (see section 3.1) and the type [X̂γ ] is equal to the type
[P̂ (·)] of the spectral projection-valued measure (14a) of a von Neumann observable (1).

Other invariants, presented in (58c), are different. In general, some scalar products 〈η|ηm〉
may be equal to zero and, that is why, scalar measures νγ (·), corresponding to different classes
Gγ , may be of different types.

Single out classes G̃γ , for which [ ˆ̃Xγ ] = [ν̃γ ], what is equivalent to the condition
〈η̃|η̃m〉 �= 0, ∀m.

Every such class G̃γ is invariant (cf section 3.4) with the type [ν̃γ (·)] of the, corresponding
to this class, invariant scalar measure ν̃γ (·), being equal to the type [P̂ (·)].

Moreover, only for an invariant class G̃γ the type [ν̃γ ] of a scalar measure is defined by
the type [P̂ (·)] of the spectral projection-valued measure, corresponding to the von Neumann
observable (1). We recall also (cf section 3.4) that only for an invariant class the description



Quantum stochastic approach to the description of quantum measurements 7669

of a measurement can be presented through unitary invariants of a measuring process. That
is why, only for an invariant class G̃γ we can rewrite the expression for the instrument (14c)
in the form of the quantum stochastic representation, that is, via invariants of this class—the
scalar measure of discrete type [P̂ (·)] on (R,B(R)) and the family of operators, depending on
the observed outcome, but being defined through projections in this case.

Thus, for the instrument (14c) only invariant classes of von Neumann measuring processes
may be interpreted to correspond to the concept of the direct measurement of the observable (1)
in the frame of original von Neumann approach.

The approach, which we introduce in this section, may be considered as the quantum
stochastic generalization of the original von Neumann approach to the description of direct
measurements with discrete outcomes for the case of any measurable space of outcomes, any
type of a scalar measure on a space of outcomes and any type of a quantum state reduction.

Consider, for simplicity, the case when the state of a quantum system at the instant before
a measurement is pure, that is, ρ̂S = |ψ0〉〈ψ0|. In this case the un-normalized statistical
operators (57b), given by

τ̂ (i)γ (ω, ρ̂S) = Ĵ(i)
γ (ω)|ψ0〉〈ψ0|Ĵ(i)+

γ (ω) (59a)

represent pure states.The family of posterior states (57e) can be presented in the form:

ρ̂(ω, ρ̂0) =
∑
i

θ (i)γ |M(i)
γ (ω)〉〈M(i)

γ (ω)| (59b)

with

θ(i)γ (ω) = α(i)
γ kγ (α

(i)
γ )πii(ω)||Ĵ(i)

γ (ω)ψ0)||2∑
j α

(j)
γ kγ (α

(j)
γ )πjj (ω)||Ĵ(j)

γ (ω)ψ0)||2
(59c)

where we introduced the notation

M(i)
γ (ω) = Ĵ(i)

γ (ω)ψ0

||J(i)
γ (ω)ψ0||HS

(59d)

for a normalized posterior pure state defined (up to phase equivalence) by the operator Ĵ(i)
γ (ω).

The following orthonormalization relation is valid for un-normalized posterior pure states:∫
�

〈Ĵ(j)
γ (ω)ψ0, Ĵ

(i)
γ (ω)ψ0〉HSπji(ω)ν(dω) = δji‖ψ0‖2

HS
∀j, i, ∀ψ0 ∈ HS. (59e)

From (59b) it follows that for different quantum stochastic representations of the same
instrument the corresponding families of posterior pure states

{M(i)
γ (ω), ω ∈ �, i = 1, . . . , Nγ } (60a)

defined up to phase equivalence, and their statistical weights (59c) in the decomposition of
the posterior state ρ̂(ω, ρ̂0) are, in general, different, although the posterior state (statistical
operator) ρ̂(ω, ρ̂0) is the same.

The posterior statistical operator (see (10)), conditioned by the outcome ω ∈ E, is defined
by the set {M(i)

γ (ω)} of posterior pure states as

ρ̂(E, ρ̂S) =
∑Nγ

i=1 α
(i)
γ kγ (α

(i)
γ )

∫
ω∈E |M(i)

γ (ω)〉〈M(i)
γ (ω)|µ(i)

γ (dω)∑Nγ

i=1 α
(i)
γ kγ (α

(i)
γ )µ

(i)
γ (E)

∀E ∈ FB (60b)

with a probability scalar measure (57c), represented by

µ(i)
γ (dω) = ||Ĵ(i)

γ (ω)ψ0||2ν(i)γ (dω). (60c)
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The prior state (57i) has the form

ρ̂(�, ρ̂S) =
Nγ∑
i=1

α(i)
γ kγ (α

(i)
γ )

∫
�

|M(i)
γ (ω)〉〈M(i)

γ (ω)|µ(i)
γ (dω) (60d)

and can be considered as the usual statistical average over the posterior pure states (60a) with
respect to the probability scalar measure µ(i)

γ (dω) in the ‘i’ random channel of measurement
and with respect to the different channels, given with the statistical weights α(i)

γ kγ (α
(i)
γ ),∀i =

1, . . . , Nγ ,
∑

i α
(i)
γ kγ (α

(i)
γ ) = 1.

From (60b), (60d) it follows that M(i)
γ (ω) can be interpreted as a random posterior pure

state outcome in a Hilbert space HS of a quantum system, conditioned by the observed value
ω ∈ dω, in the ‘i’ random channel. For the definite ω the probabilities of different posterior
pure state outcomes are defined by (59c). We can interpret then the probability scalar measure
ν(i)γ (dω) in (60c) as describing the input probability distribution of different outcomes in the
‘i’ channel and the scalar measure µ(i)

γ (dω) as describing the output probability distribution
in the ‘i’ channel of a given invariant quantum stochastic representation.

Thus, the random operators Ĵ(i)
γ (ω) can be interpreted as describing under a single

quantum measurement the stochastic behaviour of a quantum system, conditioned by the
observed outcome ω ∈ dω in the ‘i’ random measurement channel.

Analysing the definition of the invariant class of unitarily equivalent statistical realizations
and the description, given by (59), (60), of the probability distribution of outcomes and the
family of posterior states, corresponding to this class, we conclude that different quantum
stochastic representations of the same instrument can be identified with the description of
different generalized direct quantum measurements.

Although the statistical description of these measurements (the POV measure and the
family of normalized posterior states) is the same, the stochastic behaviour of a quantum
system in the sense of specification of the probabilistic transition law governing the change
from the initial state of the quantum system to a final one under a single measurement, may be
different.

Physically, the notion of different channels under a direct measurement corresponds under
the same observed outcome of a measured quantum variable to different underlying random
quantum transitions of the environment of a measuring device, which we cannot, however,
specify with certainty.

The following proposition follows from our identification of the description of an invariant
class of unitarily and phase equivalent statistical realizations with a concrete direct quantum
measurement.

Proposition 3. For any generalized direct quantum measurement with outcomes in a standard
Borel space (�, FB) upon a quantum system being at the instant before the measurement in a
state ρ̂S, there exist:

• the unique family of complex scalar measures, absolutely continuous with respect to a
finite positive scalar measure ν(·) and satisfying the orthonormality relation:

H =
{
πji(ω)ν(dω)| ω ∈ �; i, j = 1, 2, . . . , N0;

∫
�

πji(ω)ν(dω) = δji

}
(61)

where the integer N0 may be infinite;
• the unique (up to phase equivalence) family of ν-measurable operator-valued functions
V̂i(·) on �, satisfying the orthonormality relation with respect to scalar measures (61):

V =
{
V̂i(ω)|ω ∈ �; i = 1, 2, . . . , N0;

∫
�

V̂ +
j (ω)V̂i(ω)πji(ω)ν(dω) = δji Î

}
(62a)
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and such that for any index i = 1, . . . , N0 and for ∀E ∈ FB∫
ω∈E

V̂i(ω)νi(dω) (62b)

is a bounded linear operator on HS. The relation

(Ŵiψ)(ω) = V̂i(ω)ψ ∀ψ ∈ HS (62c)

holding ν-a.e. on �, defines the bounded linear operator Ŵi : HS → L2(�, νi;HS) with
the norm ||Ŵi || = 1. In (62a)–(62c)

νi(dω) = πii(ω)ν(dω) (62d)

• the unique sequence of positive numbers α = (α1, α2, . . . , αN0), N0 �∞, satisfying the
relation

N0∑
i=1

αi = 1 (63)

such that the complete statistical description (a POV measure and a family of posterior
states) of a measurement and the complete stochastic description of the behaviour of a
quantum system under a single measurement (a family of posterior pure state outcomes
and their probability distribution) are given by:

• The POV measure

M̂(E) =
∑
i

αi

∫
ω∈E

V̂ +
i (ω) V̂i(ω) νi(dω) ∀E ∈ FB. (64)

• The family {ρ̂(ω, ρ̂S), ω ∈ �} of posterior states

ρ̂(ω, ρ̂S) =
∑
i

ξi(ω)τ̂i(ω, ρ̂S) (65a)

with

τ̂i (ω, ρ̂S) = V̂i(ω)ρ̂SV̂
+
i (ω) ξi(ω) = αiπii(ω)∑

j αjπjj (ω) tr[τ̂j (ω, ρ̂S)]
. (65b)

• The probability scalar measure of the whole measurement, given by the expression

µρS
(·) =

∑
i

αiµ
(i)
ρS
(·) (66a)

through the probability scalar measures

µ(i)
ρS
(dω) = tr[τ̂i (ω, ρ̂S)] νi(dω) (66b)

in different ‘i’ random channels of a measurement;
• The family of random operators (62), describing the stochastic behaviour of the quantum

system under a single direct measurement. Every operator V̂i(ω) defines (up to phase
equivalence) in the Hilbert space HS a posterior pure state outcome conditioned by the
observed result ω ∈ dω in the ‘i’ random channel of a measurement. For any ψ0 ∈ HS

the following orthonormality relation for a family {V̂i(ω)ψ0, ω ∈ �, i = 1, . . . , N0} of
un-normalized posterior pure state outcomes is valid:∫

�

〈V̂j (ω)ψ0, V̂i(ω)ψ0〉HS
πji(ω)ν(dω) = δji‖ψ0‖2

HS
∀j, i. (67a)

The probability distribution of different outcomes ω in a random ‘i’ channel is presented
by (66b). The statistical weights of different random channels of a measurement are given
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by numbers αi, i = 1, . . . , N0. For the definite observed outcome ω the probability of the
posterior pure state outcome V̂i(ω)ψ0 is given by

θi(ω) = αiπii(ω)||V̂i(ω)ψ0||2∑
j αjπjj (ω)||V̂j (ω)ψ0||2

. (67b)

The prior state

ρ̂(�, ρ̂S) =
N0∑
i=1

αi

∫
�

|V̂i(ω)ψ0〉〈V̂i(ω)ψ0|νi(dω)

=
N0∑
i=1

αi

∫
�

|M(i)
γ (ω)〉〈M(i)

γ (ω)|µ(i)
ρS
(dω)

M(i)
γ (ω) = V̂i(ω)ψ0

||V̂i(ω)ψ0||
(67c)

is a statistical average over the posterior pure state outcomes with respect to the probability
distribution of outcomes in every ‘i’ random measurement channel and with respect to
the different measurements channels.

We shall call V̂i(ω) a quantum stochastic evolution operator and the probability scalar
measures νi(·), ν0(·) =

∑
i αiνi(·) andµ(i)

ρS
(·), µρS(·) as input and output probability measures,

respectively.
We shall also call the triple {H,V, α} a quantum stochastic representation of a generalized

direct quantum measurement.
Direct measurements, presented by different quantum stochastic representations, are

called stochastic representation equivalent if the complete statistical and complete stochastic
description of these measurements is identical. In the frame of the QSA projective
direct measurements present such a stochastic representation equivalence class of direct
measurements on (R,B(R)), for which the complete statistical and the complete stochastic
description is given by the von Neumann measurement postulates [1], presented by the
formulae (2), (3).

Consider now also the case of indirect measurement. The following proposition is a
corollary of theorem 2.

Proposition 4. Let HS be a Hilbert space of a quantum system and (�, FB) be a standard
Borel space (�, FB). For any collection, consisting of:

• a sequence of positive coefficients

β = (β1, . . . , βN0) N0 �∞
N0∑
i=1

βi = 1 (68a)

• a family H of complex scalar measures, absolutely continuous with respect to a finite
positive scalar measure ν(·) and satisfying the orthonormality relation:

H =
{
qin(ω)ν(dω)|ω ∈ �; i = 1, . . . , N0; n = 1, . . . , N(ω);

∫
�

N(ω)∑
n=1

q∗jn(ω)qin(ω)ν(dω) = δji

}
(68b)

where the positive integer N(ω) may be infinite;
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• a family V of ν-measurable operator-valued functions V̂in(·) on �, satisfying the
orthonormality relation:

V =
{
V̂in(ω)|ω ∈ �, i = 1, . . . , N0; n = 1, . . . N(ω);

∫
�

N(ω)∑
n=1

V̂ +
jn(ω)V̂in(ω)q

∗
jn(ω)qin(ω)ν(dω) = δji Î

}
(68c)

and such that for any indexes i, n and any E ∈ FB∫
ω∈E

V̂in(ω)qin(ω)ν(dω)
∫
ω∈E

∑
n=1,...,N(ω)

V̂in(ω)|qin(ω)|2ν(dω) (68d)

are bounded linear operators on HS;
there exists an indirect measurement of a quantum system, induced by a direct measurement
upon some other quantum system, described by a Hilbert space HR and entangled with
the one considered, such that the POV measure P̂ (·) : FB → L(HR) of this direct
measurement is projection-valued and consistent with the triple, given by (68b), (68c).

The instrument, corresponding to this indirect measurement, is given by

T̂ (E)[Â] =
∑
i

βi

∫
ω∈E

N(ω)∑
n=1

V̂ +
in(ω)ÂV̂in(ω) |qin(ω)|2ν(dω). (68e)

In proposition 4 the projection-valued measure P̂ (·) is said to be consistent with the
families (68b), (68c) if the type [P̂(·)] is equal to [ν] and the multiplicity function NP of
P̂ (·) is equal to N(ω) ν-a.e. on �.

5. Semiclassical stochastic model of a quantum measurement

In quantum theory there was always a wish to combine the classical description of a measuring
apparatus for an observer with the quantum description of an observed system.

The results we derived in the previous sections allow us to introduce such kind of
interpretation of the description of a generalized direct quantum measurement.

Definition. (of a classical premeasurement state of a measuring device) We shall say that a
family of scalar measures

H0 =
{
πji(ω)ν(dω)| ω ∈ �; i, j = 1, 2, . . . , N0;

∫
�

πji(ω)ν(dω) = δji

}
(69a)

on a measurable space (�, F ) describes a classical premeasurement state H0 of a quantum
apparatus, if for any measurement ‘α’:

α = (α1, α2, . . .) αi > 0
∑
i

αi = 1 (69b)

performed by a ‘free’ apparatus in a stateH0, a probability scalar measure of ‘α’ measurement
is given by

ν
(α)
0 (dω) =

∑
i

αiπii(ω)ν(dω). (69c)

Physically different ‘α’ correspond to different preparations of the quantum state of a
measuring apparatus.
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Let at the instant before a measurement a measuring device be in a classical
premeasurement state H0 and a quantum system be in a quantum state ρ̂S. From this above
definition and proposition 3 it follows that for any measurement ‘α’, performed by a measuring
device upon a quantum system, there exists the unique (up to phase equivalence) family of
quantum stochastic evolution operators (62) such that the complete statistical and the complete
stochastic description of a measurement is given by formulae (64)–(67).

6. Concluding remarks

In the present paper we review the main approaches to the description of quantum
measurements. We analyse the structure of different classes of statistical and stochastic
realizations of an instrument, find their invariants and introduce the notion of a quantum
stochastic representation of an instrument, whose elements are wholly determined by the
invariants of the corresponding invariant class of unitarily and phase equivalent statistical
realizations.

We show that the description of a generalized direct quantum measurement can be
considered in the frame of a new general approach (QSA), based on the notion of a family of
quantum stochastic evolution operators, satisfying the orthonormality relation and describing
under a measurement the conditional evolution of a quantum system in a Hilbert space.

The proposed approach allows to give:

• the complete statistical description (a POV measure and a family of posterior states) of
any generalized direct quantum measurement;

• the complete description in a Hilbert space of the stochastic behaviour of a quantum system
under a generalized direct measurement in the sense of specification of the probabilistic
transition law governing the change from the initial state of a quantum system to a final
one under a single measurement;

• to formalize the consideration of all possible cases of generalized direct quantum
measurements, including measurements continuous in time;

• to give the semiclassical interpretation of the description of a quantum measurement.

In a sequel to this paper we shall consider in detail the further application of the proposed
general approach to the description of different concrete types of measurements.
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